Quentin Gallouédec commited on
Commit
0ea15a8
·
1 Parent(s): bf924fe

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - WalkerStandDMC-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DDPG
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: WalkerStandDMC-v0
16
+ type: WalkerStandDMC-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 934.54 +/- 35.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DDPG** Agent playing **WalkerStandDMC-v0**
25
+ This is a trained model of a **DDPG** agent playing **WalkerStandDMC-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ddpg --env WalkerStandDMC-v0 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo ddpg --env WalkerStandDMC-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ddpg --env WalkerStandDMC-v0 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo ddpg --env WalkerStandDMC-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ddpg --env WalkerStandDMC-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ddpg --env WalkerStandDMC-v0 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 64),
66
+ ('gamma', 0.99),
67
+ ('learning_rate', 0.0001),
68
+ ('n_timesteps', 1000000.0),
69
+ ('noise_std', 0.3),
70
+ ('noise_type', 'ornstein-uhlenbeck'),
71
+ ('policy', 'MlpPolicy'),
72
+ ('policy_kwargs',
73
+ 'dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))'),
74
+ ('normalize', False)])
75
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ddpg
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - WalkerStandDMC-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 3898912590
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/WalkerStandDMC-v0__ddpg__3898912590__1673811061
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - qgallouedec
78
+ - - wandb_project_name
79
+ - dmc
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - gamma
5
+ - 0.99
6
+ - - learning_rate
7
+ - 0.0001
8
+ - - n_timesteps
9
+ - 1000000.0
10
+ - - noise_std
11
+ - 0.3
12
+ - - noise_type
13
+ - ornstein-uhlenbeck
14
+ - - policy
15
+ - MlpPolicy
16
+ - - policy_kwargs
17
+ - dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))
ddpg-WalkerStandDMC-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97c274e92ed553792f31429dc0979bd9f371bf62855ed4d7a4c1e1571b808807
3
+ size 3273982
ddpg-WalkerStandDMC-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ddpg-WalkerStandDMC-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e3a32a3d84455b3fb026be3670f4d4547c6b316a353476e90c6dd3b85fe1d0c
3
+ size 556015
ddpg-WalkerStandDMC-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cb325be24d582b1a90bf0760b79b3bea8284e7cff287f6a32e75781f694b6e8
3
+ size 1068655
ddpg-WalkerStandDMC-v0/data ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x15c998280>",
8
+ "_build": "<function TD3Policy._build at 0x15c998310>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x15c9983a0>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x15c998430>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x15c9984c0>",
12
+ "forward": "<function TD3Policy.forward at 0x15c998550>",
13
+ "_predict": "<function TD3Policy._predict at 0x15c9985e0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x15c998670>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x15c992980>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": {
21
+ "pi": [
22
+ 300,
23
+ 200
24
+ ],
25
+ "qf": [
26
+ 400,
27
+ 300
28
+ ]
29
+ },
30
+ "n_critics": 1
31
+ },
32
+ "observation_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWV8AwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLGIWUjAFDlHSUUpSMBGhpZ2iUaBMolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksYhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAICwd+Jag1nc1BYVPKBj96OlsG32/9APVxRhus9VYhTF4j4bMZUAUNQztPpL4eFVbln4BTSf5+twMTr0JKPCN8SGUpNEiUC2QDOVr6v1SLkERsCcDhhT8K4P7NVQ4azLNogRE6wn9wyi2Vxu4KvUD9iDyz5CKj+eOobpZ8VDcO50pOXy73A9dx31G7hwoka1RwgtMj/mywU+c3/CqD6JmxHAaVN+HEeCPysPNNSm+VXLTUhLoRm6HGiXJsa1p1jS6S8CWnb2aFldeYsszSerm/9xVOaZoya6CxPBGeginDCwkBVnJhSZt7rMgAp249wAbp1r3zUIR3IliRrB3b4bFFEMrqI6ZGdg5jOYiQDG6msfV2V7xyMsxhKmYKJpEq0l9v4/yPNSEqunyyNL1zbpVYdwHO9B6gKpuAOFseciCRksGjJIpsFnEt83HeM8qOXEj1fgoCJ5fPIHC01HCv9PQeAzZ6dUSjZFcP1jaFVHaubTq394HcXxI+qY59O9N84jTD6D6pTVAu/THuXIov7xUSN8K9+BU38zdppfMYaMFi6RVE3yy4/Bst4cn9PPndGUbnUJ45gg9LuFo20UKQ6ltm1tPv/D0XjTKiE46Z0RB9bN9aPzx9+TCMNU2Cgff1khPWD0LVyQKtW4NMbtsCrnlnX0492jAKr7Bo+wSiEEnzHZnWfLagmH3PGo5Bpp5Goz0o1UOx0sekcKD55fXhFBewWvIFwbmToCJ8A8USrj3Fw6ZJg5WNJt5zYIJ1y6rowDOOdqs7caleYMMMBU1BsXjbEPYfSvGiqms3UNMrqHBUm6Y4f6Xj0IV5YX/jLdO6DEnVkZPFBNPKr8Xq/hgG3wNu6vuDXzOutALGqI+ZS9QlhQHCVn9pYOWY2MZwe0yPYJdBHaZIIiNUSYCRoHGwr/Cq4MqY7nfGYZCb5c5xsuGxk/QGsRlTVf0Q59AqNAN30BD+FmhKJ507MjR8LGnVwXl0AtGdJ6U8XSQKcQo3X2Lvky/mtG9yhqJKsoQEqfJ54FGYu5+y+lZwMa2HhDoweMlH9Xsbe1kAoKJbQrIauuiARRxL92YteVNG7p5gATjprX9REsWZPoqpgwNOu39QPUySH0KiponveSb0lFRWPFF87FfEUl8CdO0/KZgm/Ddm7gfSbwlXv+s+VdGBiV9g/q+jwpgsQrn4fSoYQiUe24maALFGuH56D1kwrRKabnubMtJ1PoEk5bYhyEItlAEliEoASBiKMu+MAizGrZSSTUeYlqZMckxERcOGleE2gvSrZm4heVC48twSJTBk9Zfuhm0D8Qvjx8HcwFhodej4oLGCsKv9owR8TEjbRVTbXaAXcgSiyEdT3bgrmLeXo8lVK6XXHYpB8jzzwwk6Dv+LlL5j2+UYa+gNbhk+qwhgwlhHVFO3FludZa1TE+7SRf45mB+YJNKhiqwyf72RJVxod5MYNLwA9dIKUYtL7pa0xtPpAHvR733I56AwaETvZLbiUmPC33tqeqKcTwg7r2WfL6NnoBrOUx8mQmjsVLsTuVobsc/uob42UB5LsqyDHAbky7xyrcPhqcHM6zRvlpA5aOd+VyPJNmoBrnjLuG/ns645jZoPQayNKS28UT+eXKfpgmmoKVrA4kCVz6VTMYmAlMpIa979jiMc205LKqCOXFgdPqMfKQlSrelXJtx/vNTVlan+/Q9XclkV9m+Q3qdkN+6si3XFwDVk4+viYXhWc0BJv9Cksqv8RTZsdd1heZ/6TPk94CUzDxCh75kk336d0X+8if7xd6ZOtLmWnl1xrf+bxltgqQF8Xnpi4UwoJV2sybfogccR+f2J4dkG5q5Jrn23686v86isNzJOUeJ6CC2O4nIkSFZ4oX/SG3e1Zq/PxSGPGoiKbE/sLKMEelWC+OKh7arDszGsCPLOTgqCvkUpsuSj2iyEeV0136FmYUd7ShHCt4ZMK2/nNAT+zeJ0tYMKcDjgH3/NM9HgSAwN+KqRtskMPrJOpwcwjDkSBzRRyR3A8hksRU22eu1ptody2BpLNMB7sSjqB7eMVse19e1FSZAxPUXoZK9oiJLF6Awd+v/xRWw4MvB8OuE6QJt1gUK5UtrOsp7QB2RDdB9OLCOz2H3Gy+i7fu6PR3BSiGIGtjdYzN59rPqDMYzNizBYHC0q6I1V6VaVN6L3wt1akJHzGNl36Pekio4y7tjb4Mvt4MFhq1nPJtX6re2Nhjnc8r30gvkQ0SQEG77OmOszWuuFiFikFQdcoyVOk65jfspElFvwJbh/M3nimGscvxhNeoE1RvFj2h1iS3r6eionVeGNoTrtbajS36pnD6r5aNjulq8lHib6OP6ft5yuBfeZjAtLOgJFWomjep1rBZM3j/5Z3MZH4aAcocqBlXZbqe+v8I8aF5IZZ8JULzP2cmgXmcqAWcZg4RRW4HRtSJAjk0+QwtmhV3DmL3j9rhnC31CiZpQZa7ufneCxHbhR75Zg8hlZTzEwUm7Fkv4pOhJ+oSPBpGFaucYFQOVsxPwR9JYmUIE44U6Nq39orTqJCYo2qqbJ76eTBpwMHZx5aDeiBCJuPOM9kglCOkqtcpjDjGnpSuduLhtfWkVIneaMyPvsQC8zW+TjCida5hwqe0WUkiaVrDKXXpDlKPl5fGB26fZDoCH9SOXO4ZtJWNY6JyzecAJRq0uYRb5q7Zc7wXoaLn6nWliSkI3upL5Wq9A9OYII+uXKYUEl/Gy9nYtplxYuj2SjeSGXM28T/3z/s6EsMjJP+AYyr0eB8GaH7IrNbEPwgt2QlsEgRmoNt7OxnHLA+kUy/bAAiFkYs7qWdtBPP08PvhtuPJ7xKASp/MyHaOi4q8DYv+fOVV/bwjPaimkG4eNM6wtsF3RFIoUBawWQKjaVHI2ckgh5v5pkn2m2C3rZlK4bPdL7NbP6g3s1ZsYil2bkOUHK8nVTrqxjS3cFDidi7+eh9+nRhtxueTrOPwLEVnAsGvJfqEJ/QFWg8t2eOR1vfw6LugW2Hc2qEjGTRhMzmtLy5/4yD660Lx4pyTuKoCuhV7674LF2Ofsu3Ual/SQBu+2R9oUuSSVc0mHKVIQW9fdAQjfgbB6+HAsIry8W7mbOA0Bk7q0tBtswN8MKNdACVy/iLW0N2VlJqmA1vtNUZ0941NUu2CpL+I9hMAOTxZ09JX7KnIriO3kgz1LpYMN5Cwlz9633TS392sHAaVnpiPBuE1v6OgWyfOrYSLQ+0wgdxjJHRhj7rldHtTwqDHq57xqc2JyjUu78/4ZZP9/xiISWpBHMyh/mjZ63v+usIUsUTj3bN63JlxL3e6riyo2CHypI9U0V0UF+3FCDdyWpRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 24
38
+ ],
39
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
40
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
41
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
42
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "action_space": {
46
+ ":type:": "<class 'gym.spaces.box.Box'>",
47
+ ":serialized:": "gAWVPAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUjAFDlHSUUpSMBGhpZ2iUaBMolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwaFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYGAAAAAAAAAAEBAQEBAZRoIksGhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
48
+ "dtype": "float32",
49
+ "_shape": [
50
+ 6
51
+ ],
52
+ "low": "[-1. -1. -1. -1. -1. -1.]",
53
+ "high": "[1. 1. 1. 1. 1. 1.]",
54
+ "bounded_below": "[ True True True True True True]",
55
+ "bounded_above": "[ True True True True True True]",
56
+ "_np_random": "RandomState(MT19937)"
57
+ },
58
+ "n_envs": 1,
59
+ "num_timesteps": 1000000,
60
+ "_total_timesteps": 1000000,
61
+ "_num_timesteps_at_start": 0,
62
+ "seed": 0,
63
+ "action_noise": {
64
+ ":type:": "<class 'stable_baselines3.common.noise.OrnsteinUhlenbeckActionNoise'>",
65
+ ":serialized:": "gAWVzQEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMHE9ybnN0ZWluVWhsZW5iZWNrQWN0aW9uTm9pc2WUk5QpgZR9lCiMBl90aGV0YZRHP8MzMzMzMzOMA19tdZSMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMBl9zaWdtYZRoCSiWMAAAAAAAAAAzMzMzMzPTPzMzMzMzM9M/MzMzMzMz0z8zMzMzMzPTPzMzMzMzM9M/MzMzMzMz0z+UaBBLBoWUaBR0lFKUjANfZHSURz+EeuFHrhR7jA1pbml0aWFsX25vaXNllE6MCm5vaXNlX3ByZXaUaAkoljAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgQSwaFlGgUdJRSlHViLg==",
66
+ "_theta": 0.15,
67
+ "_mu": "[0. 0. 0. 0. 0. 0.]",
68
+ "_sigma": "[0.3 0.3 0.3 0.3 0.3 0.3]",
69
+ "_dt": 0.01,
70
+ "initial_noise": null,
71
+ "noise_prev": "[0. 0. 0. 0. 0. 0.]"
72
+ },
73
+ "start_time": 1673811066230927501,
74
+ "learning_rate": {
75
+ ":type:": "<class 'function'>",
76
+ ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
77
+ },
78
+ "tensorboard_log": "runs/WalkerStandDMC-v0__ddpg__944727303__1673811061/WalkerStandDMC-v0",
79
+ "lr_schedule": {
80
+ ":type:": "<class 'function'>",
81
+ ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
82
+ },
83
+ "_last_obs": null,
84
+ "_last_episode_starts": {
85
+ ":type:": "<class 'numpy.ndarray'>",
86
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
87
+ },
88
+ "_last_original_obs": {
89
+ ":type:": "<class 'numpy.ndarray'>",
90
+ ":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAGclfD80AzE+aK5/P/xTTL2xBko/BTsdPxTEfT/G/Aa+YntXPys3Cr+2VFY/av4Lv5HObz+YNLO+H9aYP2+NJj6EmKE+aUXJP3LUoT8043U/GgrkPTjqMUAwNHG+nk1uwZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsYhpSMAUOUdJRSlC4="
91
+ },
92
+ "_episode_num": 1000,
93
+ "use_sde": false,
94
+ "sde_sample_freq": -1,
95
+ "_current_progress_remaining": 0.0,
96
+ "ep_info_buffer": {
97
+ ":type:": "<class 'collections.deque'>",
98
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxAd2/BeDh0CUhpRSlIwBbJRN6AOMAXSUR0C/DXXEyckMdX2UKGgGaAloD0MIVvDbEMMwjkCUhpRSlGgVTegDaBZHQL8V1UipvP11fZQoaAZoCWgPQwggKo2YOXqJQJSGlFKUaBVN6ANoFkdAvx5FVktmMHV9lChoBmgJaA9DCDW3QlitA4lAlIaUUpRoFU3oA2gWR0C/JqKgRK6GdX2UKGgGaAloD0MIK6bST5gLjUCUhpRSlGgVTegDaBZHQL8vEDV6NVB1fZQoaAZoCWgPQwj0Morl1jGLQJSGlFKUaBVN6ANoFkdAvzdtsANoanV9lChoBmgJaA9DCGITmbmgg4RAlIaUUpRoFU3oA2gWR0C/P9pQDV6NdX2UKGgGaAloD0MIBp57D3d1iUCUhpRSlGgVTegDaBZHQL9ISKQq7RR1fZQoaAZoCWgPQwg51sVtNBOLQJSGlFKUaBVN6ANoFkdAv1CwnAqNInV9lChoBmgJaA9DCEg17Pck2oRAlIaUUpRoFU3oA2gWR0C/WQwA2hqTdX2UKGgGaAloD0MIzR39L5foiECUhpRSlGgVTegDaBZHQL9hfi++M611fZQoaAZoCWgPQwiXAz3UljSKQJSGlFKUaBVN6ANoFkdAv2ny/QBxP3V9lChoBmgJaA9DCJ9b6EqE9odAlIaUUpRoFU3oA2gWR0C/cmX/HYHxdX2UKGgGaAloD0MIKT4+IdupikCUhpRSlGgVTegDaBZHQL96y3irDIl1fZQoaAZoCWgPQwg9m1WfyxOJQJSGlFKUaBVN6ANoFkdAv4MV/OMVDnV9lChoBmgJaA9DCIvfFFZqKoBAlIaUUpRoFU3oA2gWR0C/i3vNeMQ3dX2UKGgGaAloD0MIRnpRu9/9i0CUhpRSlGgVTegDaBZHQL+T7za9K291fZQoaAZoCWgPQwgvih74+NaNQJSGlFKUaBVN6ANoFkdAv5xd5rxiG3V9lChoBmgJaA9DCKKZJ9dUhI5AlIaUUpRoFU3oA2gWR0C/pM1UEPlNdX2UKGgGaAloD0MILZRMTm0/jkCUhpRSlGgVTegDaBZHQL+tPTIeYD11fZQoaAZoCWgPQwiESlzH2FKJQJSGlFKUaBVN6ANoFkdAv7WirtE5Q3V9lChoBmgJaA9DCN/DJce9aoZAlIaUUpRoFU3oA2gWR0C/vgrtiQT3dX2UKGgGaAloD0MIyZI5lpfai0CUhpRSlGgVTegDaBZHQL/GfBAv+Ox1fZQoaAZoCWgPQwg3picsMYSGQJSGlFKUaBVN6ANoFkdAv87oIu5BknV9lChoBmgJaA9DCEBtVKfDFIxAlIaUUpRoFU3oA2gWR0C/11mETQE7dX2UKGgGaAloD0MIKv2Es7t7i0CUhpRSlGgVTegDaBZHQL/oMBPbfxd1fZQoaAZoCWgPQwhDAdvBCFmHQJSGlFKUaBVN6ANoFkdAv/CVshxHXnV9lChoBmgJaA9DCOSeru44O4lAlIaUUpRoFU3oA2gWR0C/+PKsEJSjdX2UKGgGaAloD0MIwhIPKNvkjECUhpRSlGgVTegDaBZHQMAAsZPuXu51fZQoaAZoCWgPQwjq501FCkOLQJSGlFKUaBVN6ANoFkdAwATpQUpNK3V9lChoBmgJaA9DCFGf5A67iYZAlIaUUpRoFU3oA2gWR0DACRk4DLbIdX2UKGgGaAloD0MILSRgdHl9jkCUhpRSlGgVTegDaBZHQMANTH+6y0N1fZQoaAZoCWgPQwhCeLRxJNaKQJSGlFKUaBVN6ANoFkdAwBGFOIInjXV9lChoBmgJaA9DCK66DtXUAndAlIaUUpRoFU3oA2gWR0DAFbxK15SndX2UKGgGaAloD0MIq1s9J90AjECUhpRSlGgVTegDaBZHQMAZ88I7eVN1fZQoaAZoCWgPQwhZi08BsDmCQJSGlFKUaBVN6ANoFkdAwB4iyyD7InV9lChoBmgJaA9DCEVHcvmvSYxAlIaUUpRoFU3oA2gWR0DAIlgfMfRvdX2UKGgGaAloD0MI3gGetHAEh0CUhpRSlGgVTegDaBZHQMAmjl1jiGZ1fZQoaAZoCWgPQwjNeFvpFUWMQJSGlFKUaBVN6ANoFkdAwCq/aW5Yo3V9lChoBmgJaA9DCIDwoUQLb4hAlIaUUpRoFU3oA2gWR0DALvJ/Tb35dX2UKGgGaAloD0MI1v1jIdriiUCUhpRSlGgVTegDaBZHQMAzJbZezD51fZQoaAZoCWgPQwi7gJcZ9tiHQJSGlFKUaBVN6ANoFkdAwDddHz6JqXV9lChoBmgJaA9DCEnXTL7ZHYpAlIaUUpRoFU3oA2gWR0DAO5bBdld1dX2UKGgGaAloD0MITBjNyvYJiECUhpRSlGgVTegDaBZHQMA/z1vES/V1fZQoaAZoCWgPQwj3H5kOHW2JQJSGlFKUaBVN6ANoFkdAwEQCGW2PUHV9lChoBmgJaA9DCIY8ghsJ1opAlIaUUpRoFU3oA2gWR0DASDCVv/BFdX2UKGgGaAloD0MIJoqQuj1RhUCUhpRSlGgVTegDaBZHQMBMZMLWqcV1fZQoaAZoCWgPQwh1WrdBDbWNQJSGlFKUaBVN6ANoFkdAwFCbnrY5DXV9lChoBmgJaA9DCLXAHhOp14lAlIaUUpRoFU3oA2gWR0DAVNJiqhlEdX2UKGgGaAloD0MIGjGzz+MXiUCUhpRSlGgVTegDaBZHQMBZAg6dUbV1fZQoaAZoCWgPQwim1ZC4B2eKQJSGlFKUaBVN6ANoFkdAwGF3yUcGT3V9lChoBmgJaA9DCOMW83OjQotAlIaUUpRoFU3oA2gWR0DAZas4DLbIdX2UKGgGaAloD0MIKuEJvT4qh0CUhpRSlGgVTegDaBZHQMBp2B0ZFXt1fZQoaAZoCWgPQwgL0LaalRGJQJSGlFKUaBVN6ANoFkdAwG4OwpvxY3V9lChoBmgJaA9DCI9xxcURmYlAlIaUUpRoFU3oA2gWR0DAckFQoCuEdX2UKGgGaAloD0MIPBdGenFsikCUhpRSlGgVTegDaBZHQMB2bmDtgKF1fZQoaAZoCWgPQwjPaoE9xm6LQJSGlFKUaBVN6ANoFkdAwHqoi0OVgXV9lChoBmgJaA9DCJj4o6iTe4lAlIaUUpRoFU3oA2gWR0DAfuD4DcM3dX2UKGgGaAloD0MIHCeFec/ri0CUhpRSlGgVTegDaBZHQMCDEOTzNEB1fZQoaAZoCWgPQwjTvrm/WmWOQJSGlFKUaBVN6ANoFkdAwIdITRplBnV9lChoBmgJaA9DCCZUcHghto1AlIaUUpRoFU3oA2gWR0DAi4G2NNrTdX2UKGgGaAloD0MIBiy5isUhh0CUhpRSlGgVTegDaBZHQMCPst0V8Cx1fZQoaAZoCWgPQwjrxrsjQ3WNQJSGlFKUaBVN6ANoFkdAwJPmCJ40M3V9lChoBmgJaA9DCJViR+NQtIZAlIaUUpRoFU3oA2gWR0DAmBE9GI9DdX2UKGgGaAloD0MI+Z/83RtuiECUhpRSlGgVTegDaBZHQMCcSVBD5TJ1fZQoaAZoCWgPQwhMw/AR8SaEQJSGlFKUaBVN6ANoFkdAwKB5U6PsA3V9lChoBmgJaA9DCBk6dlBJN4pAlIaUUpRoFU3oA2gWR0DApK6/20zCdX2UKGgGaAloD0MIol7wac55jUCUhpRSlGgVTegDaBZHQMCo5p6po9N1fZQoaAZoCWgPQwjbboJvWsqIQJSGlFKUaBVN6ANoFkdAwK0egmJFb3V9lChoBmgJaA9DCKpm1lJAoodAlIaUUpRoFU3oA2gWR0DAsVS8+RozdX2UKGgGaAloD0MIOrLyy2BaikCUhpRSlGgVTegDaBZHQMC1h/R/mT11fZQoaAZoCWgPQwhEFmnifeuMQJSGlFKUaBVN6ANoFkdAwLm8j2SMcnV9lChoBmgJaA9DCFytE5ej1ohAlIaUUpRoFU3oA2gWR0DAvfUq2BrfdX2UKGgGaAloD0MI6Xx4lsB/jkCUhpRSlGgVTegDaBZHQMDCLdMj/uN1fZQoaAZoCWgPQwg74SU4NcWKQJSGlFKUaBVN6ANoFkdAwMZih1Tzd3V9lChoBmgJaA9DCNdtUPst5IhAlIaUUpRoFU3oA2gWR0DAztxZ4fOldX2UKGgGaAloD0MIUvNV8tEsjUCUhpRSlGgVTegDaBZHQMDTFaIN3GJ1fZQoaAZoCWgPQwiNYrmltQ2GQJSGlFKUaBVN6ANoFkdAwNdHFHavinV9lChoBmgJaA9DCPJ5xVNPL4hAlIaUUpRoFU3oA2gWR0DA239WjoIOdX2UKGgGaAloD0MIaMu5FJdth0CUhpRSlGgVTegDaBZHQMDfrqYRdyF1fZQoaAZoCWgPQwju7ZbkwC+IQJSGlFKUaBVN6ANoFkdAwOPjDQZ4wHV9lChoBmgJaA9DCDrJVpeTIIhAlIaUUpRoFU3oA2gWR0DA6BNEVnEmdX2UKGgGaAloD0MIVz82yW/IhECUhpRSlGgVTegDaBZHQMDsPqeTV2B1fZQoaAZoCWgPQwhWgzC3+86CQJSGlFKUaBVN6ANoFkdAwPBg9yLhrHV9lChoBmgJaA9DCG5sdqR62IRAlIaUUpRoFU3oA2gWR0DA9I6c/dIodX2UKGgGaAloD0MIprT+loDOhkCUhpRSlGgVTegDaBZHQMD4uxwQ1791fZQoaAZoCWgPQwhbs5WXPDOMQJSGlFKUaBVN6ANoFkdAwPzhvbXYlXV9lChoBmgJaA9DCH5XBP9bTotAlIaUUpRoFU3oA2gWR0DBAQqH9FWodX2UKGgGaAloD0MIArnEkccEi0CUhpRSlGgVTegDaBZHQMEFLw0XP7h1fZQoaAZoCWgPQwjO/GoOMPqLQJSGlFKUaBVN6ANoFkdAwQlYJUo8ZHV9lChoBmgJaA9DCMR4zau6oYNAlIaUUpRoFU3oA2gWR0DBDXLO/tY0dX2UKGgGaAloD0MI4ExMF8LRhECUhpRSlGgVTegDaBZHQMERj/Nqxkd1fZQoaAZoCWgPQwjvIHamcGaBQJSGlFKUaBVN6ANoFkdAwRW2piI+GHV9lChoBmgJaA9DCBFtx9Rd3IpAlIaUUpRoFU3oA2gWR0DBGd1sLv1EdX2UKGgGaAloD0MI+1jBbwM/ikCUhpRSlGgVTegDaBZHQMEeA3IuGsV1fZQoaAZoCWgPQwhEvkupC3KNQJSGlFKUaBVN6ANoFkdAwSIkKP4mC3V9lChoBmgJaA9DCH2x9+JrTYhAlIaUUpRoFU3oA2gWR0DBJkTBhx5tdX2UKGgGaAloD0MIC0Pk9JXQjkCUhpRSlGgVTegDaBZHQMEqZeQdS2p1fZQoaAZoCWgPQwjnbtdLE2yMQJSGlFKUaBVN6ANoFkdAwS5/987ZF3V9lChoBmgJaA9DCAq/1M97uItAlIaUUpRoFU3oA2gWR0DBMptk+X7cdWUu"
99
+ },
100
+ "ep_success_buffer": {
101
+ ":type:": "<class 'collections.deque'>",
102
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
103
+ },
104
+ "_n_updates": 1000000,
105
+ "buffer_size": 1,
106
+ "batch_size": 64,
107
+ "learning_starts": 100,
108
+ "tau": 0.005,
109
+ "gamma": 0.99,
110
+ "gradient_steps": -1,
111
+ "optimize_memory_usage": false,
112
+ "replay_buffer_class": {
113
+ ":type:": "<class 'abc.ABCMeta'>",
114
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
115
+ "__module__": "stable_baselines3.common.buffers",
116
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
117
+ "__init__": "<function ReplayBuffer.__init__ at 0x15c996dd0>",
118
+ "add": "<function ReplayBuffer.add at 0x15c996e60>",
119
+ "sample": "<function ReplayBuffer.sample at 0x15c996ef0>",
120
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x15c996f80>",
121
+ "__abstractmethods__": "frozenset()",
122
+ "_abc_impl": "<_abc._abc_data object at 0x15c936240>"
123
+ },
124
+ "replay_buffer_kwargs": {},
125
+ "train_freq": {
126
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
127
+ ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
128
+ },
129
+ "use_sde_at_warmup": false,
130
+ "policy_delay": 1,
131
+ "target_noise_clip": 0.0,
132
+ "target_policy_noise": 0.1,
133
+ "actor_batch_norm_stats": [],
134
+ "critic_batch_norm_stats": [],
135
+ "actor_batch_norm_stats_target": [],
136
+ "critic_batch_norm_stats_target": []
137
+ }
ddpg-WalkerStandDMC-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02caa50f7a6e7b5f2b8ec4a59049e7366b2582cd87f15a1a412763470be45e1c
3
+ size 1622877
ddpg-WalkerStandDMC-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ddpg-WalkerStandDMC-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: macOS-13.0.1-arm64-arm-64bit Darwin Kernel Version 22.1.0: Sun Oct 9 20:14:30 PDT 2022; root:xnu-8792.41.9~2/RELEASE_ARM64_T8103
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1d674f25f507666f04cb199a02abb25625b518d3dc8522a59c63f095ea88919
3
+ size 905402
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 934.5388659, "std_reward": 35.61194470781571, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T09:18:34.582950"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2d150bd8998e061390533f5bfefe65cbe6c8cc16f5743567472f01e8752a050
3
+ size 42856