File size: 1,673 Bytes
e226b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
license: apache-2.0
base_model:
- tiiuae/Falcon3-10B-Instruct
- tiiuae/Falcon3-10B-Instruct
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- tiiuae/Falcon3-10B-Instruct
---
# Falcon3-2x10B-MoE-Instruct
Falcon3-2x10B-MoE-Instruct is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [tiiuae/Falcon3-10B-Instruct](https://huggingface.co/tiiuae/Falcon3-10B-Instruct)
* [tiiuae/Falcon3-10B-Instruct](https://huggingface.co/tiiuae/Falcon3-10B-Instruct)
## 🧩 Configuration
```yaml
base_model: tiiuae/Falcon3-10B-Instruct
gate_mode: random
architecture: mixtral
dtype: bfloat16
experts:
- source_model: tiiuae/Falcon3-10B-Instruct
positive_prompts:
- "Help me write a story"
- source_model: tiiuae/Falcon3-10B-Instruct
positive_prompts:
- "Can you explain this?"
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "qingy2024/Falcon3-2x10B-MoE-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |