---
license: gemma
datasets:
- GBaker/MedQA-USMLE-4-options-hf
base_model:
- google/gemma-3-12b-it
library_name: transformers
tags:
- biology
- medical
---
# Gemma-3-12B-GRPO trained with GRPO via LoRA
Due to limited available computational resources, we randomly sampled 500 data points from MedQA-USMLE using a methodology and conducted preliminary GRPO experiments with LoRA using the [Unsloth](https://github.com/unslothai/unsloth) framework. We are now releasing this as a preview version. More experiments and explorations are currently underway, and a technical report is in preparation. Thank you for your patience. We conduct the experiments on one RTX-A6000 Ada (48GB VRAM).
## Evaluation Results
The model is evaluated on four benchmark datasets: MMLU, MMLU-Pro, CMMU, GSM8K, GPQA. The experimental results are summarized in Table 1, with comprehensive analyses provided in the Detailed Results section.
Tab.1 Evaluation results.
| Dataset | Gemma-3-12b-it | Gemma3-12b-GRPO |
| :-----: | :------------: | :-------------: |
| MMLU | 65.51 | 70.13 |
| MMLU-Pro | 60.17 | 59.99 |
| CMMLU | 54.81 | 57.07 |
| GSM8K | 91.58 | 91.81 |
| GPQA | 34.98 | 34.23 |
## Requirements
```shell
pip install torch==2.6.0 torchaudio==2.6.0 torchvision==0.21.0 -i --index-url https://download.pytorch.org/whl/cu124
pip install transformer vllm bitsandbytes peft
pip install flash-attn --no-build-isolation
```
## Run with vLLM
You can use the following script to run with vLLM.
```shell
vllm serve qiuxi337/gemma-3-12b-it-grpo \
--gpu-memory-utilization 0.85 \
--max-model-len 4096 \
--served-model-name gemma3-12b-grpo \
--api-key your_api_key
```
## Detail Results
### MMLU

**Fig.1 The results on the MMLU benchmark.**

**Fig.2 The results on the MMLU-Humanities**

**Fig.3 The results on the MMLU-Social Science**

**Fig.4 The results on the MMLU-STEM**

**Fig.5 The results on the MMLU-Other**
### MMLU-Pro

**Fig.6 The results on the MMLU-Pro**
### CMMLU

**Fig.7 The results on the CMMLU benchmark.**

**Fig.8 The results on the CMMLU-Humanities**

**Fig.9 The results on the CMMLU-Social Science**

**Fig.10 The results on the CMMLU-STEM**

**Fig.11 The results on the CMMLU-Other**

**Fig.12 The results on the CMMLU-China Specific**
## Acknowledge
[Gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it)
[Unlsoth](https://github.com/unslothai/unsloth)
## Citation
```ini
@software{Qiu_Open-Medical-R1,
author = {Qiu, Zhongxi and Zhang, Zhang and Hu, Yan and Li, Heng and Liu, Jiang},
license = {MIT},
title = {{Open-Medical-R1}},
url = {https://github.com/Qsingle/open-medical-r1},
version = {0.1}
}
```