Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -35,21 +35,21 @@ More details on model performance across various devices, can be found
|
|
35 |
|
36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
|---|---|---|---|---|---|---|---|---|
|
38 |
-
| EfficientNet-B4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 3.
|
39 |
-
| EfficientNet-B4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 3.
|
40 |
-
| EfficientNet-B4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 3.
|
41 |
-
| EfficientNet-B4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 2.
|
42 |
-
| EfficientNet-B4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.
|
43 |
-
| EfficientNet-B4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.
|
44 |
-
| EfficientNet-B4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 2.
|
45 |
-
| EfficientNet-B4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.
|
46 |
-
| EfficientNet-B4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 2.
|
47 |
-
| EfficientNet-B4 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 3.
|
48 |
-
| EfficientNet-B4 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.
|
49 |
-
| EfficientNet-B4 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 7.
|
50 |
-
| EfficientNet-B4 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 7.
|
51 |
-
| EfficientNet-B4 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.
|
52 |
-
| EfficientNet-B4 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.
|
53 |
|
54 |
|
55 |
|
@@ -114,7 +114,7 @@ EfficientNet-B4
|
|
114 |
Device : Samsung Galaxy S23 (13)
|
115 |
Runtime : TFLITE
|
116 |
Estimated inference time (ms) : 3.6
|
117 |
-
Estimated peak memory usage (MB): [0,
|
118 |
Total # Ops : 482
|
119 |
Compute Unit(s) : NPU (482 ops)
|
120 |
```
|
@@ -135,13 +135,29 @@ in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
|
135 |
import torch
|
136 |
|
137 |
import qai_hub as hub
|
138 |
-
from qai_hub_models.models.efficientnet_b4 import
|
139 |
|
140 |
# Load the model
|
|
|
141 |
|
142 |
# Device
|
143 |
device = hub.Device("Samsung Galaxy S23")
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
```
|
147 |
|
|
|
35 |
|
36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
|---|---|---|---|---|---|---|---|---|
|
38 |
+
| EfficientNet-B4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 3.619 ms | 0 - 280 MB | FP16 | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) |
|
39 |
+
| EfficientNet-B4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 3.731 ms | 0 - 239 MB | FP16 | NPU | [EfficientNet-B4.so](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.so) |
|
40 |
+
| EfficientNet-B4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 3.562 ms | 0 - 50 MB | FP16 | NPU | [EfficientNet-B4.onnx](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.onnx) |
|
41 |
+
| EfficientNet-B4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 2.635 ms | 0 - 26 MB | FP16 | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) |
|
42 |
+
| EfficientNet-B4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.691 ms | 1 - 25 MB | FP16 | NPU | [EfficientNet-B4.so](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.so) |
|
43 |
+
| EfficientNet-B4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.586 ms | 0 - 163 MB | FP16 | NPU | [EfficientNet-B4.onnx](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.onnx) |
|
44 |
+
| EfficientNet-B4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 2.123 ms | 0 - 26 MB | FP16 | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) |
|
45 |
+
| EfficientNet-B4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.547 ms | 0 - 25 MB | FP16 | NPU | Use Export Script |
|
46 |
+
| EfficientNet-B4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 2.504 ms | 1 - 69 MB | FP16 | NPU | [EfficientNet-B4.onnx](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.onnx) |
|
47 |
+
| EfficientNet-B4 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 3.62 ms | 0 - 281 MB | FP16 | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) |
|
48 |
+
| EfficientNet-B4 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.337 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
49 |
+
| EfficientNet-B4 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 7.24 ms | 0 - 36 MB | FP16 | NPU | [EfficientNet-B4.tflite](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.tflite) |
|
50 |
+
| EfficientNet-B4 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 7.454 ms | 0 - 36 MB | FP16 | NPU | Use Export Script |
|
51 |
+
| EfficientNet-B4 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.627 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| EfficientNet-B4 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.746 ms | 46 - 46 MB | FP16 | NPU | [EfficientNet-B4.onnx](https://huggingface.co/qualcomm/EfficientNet-B4/blob/main/EfficientNet-B4.onnx) |
|
53 |
|
54 |
|
55 |
|
|
|
114 |
Device : Samsung Galaxy S23 (13)
|
115 |
Runtime : TFLITE
|
116 |
Estimated inference time (ms) : 3.6
|
117 |
+
Estimated peak memory usage (MB): [0, 280]
|
118 |
Total # Ops : 482
|
119 |
Compute Unit(s) : NPU (482 ops)
|
120 |
```
|
|
|
135 |
import torch
|
136 |
|
137 |
import qai_hub as hub
|
138 |
+
from qai_hub_models.models.efficientnet_b4 import Model
|
139 |
|
140 |
# Load the model
|
141 |
+
torch_model = Model.from_pretrained()
|
142 |
|
143 |
# Device
|
144 |
device = hub.Device("Samsung Galaxy S23")
|
145 |
|
146 |
+
# Trace model
|
147 |
+
input_shape = torch_model.get_input_spec()
|
148 |
+
sample_inputs = torch_model.sample_inputs()
|
149 |
+
|
150 |
+
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
151 |
+
|
152 |
+
# Compile model on a specific device
|
153 |
+
compile_job = hub.submit_compile_job(
|
154 |
+
model=pt_model,
|
155 |
+
device=device,
|
156 |
+
input_specs=torch_model.get_input_spec(),
|
157 |
+
)
|
158 |
+
|
159 |
+
# Get target model to run on-device
|
160 |
+
target_model = compile_job.get_target_model()
|
161 |
|
162 |
```
|
163 |
|