Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -37,36 +37,35 @@ More details on model performance across various devices, can be found
|
|
37 |
|
38 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
|---|---|---|---|---|---|---|---|---|
|
40 |
-
| FFNet-54S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 11.
|
41 |
-
| FFNet-54S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 14.
|
42 |
-
| FFNet-54S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 8.
|
43 |
-
| FFNet-54S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX |
|
44 |
-
| FFNet-54S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE |
|
45 |
-
| FFNet-54S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 9.
|
46 |
-
| FFNet-54S-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 44.
|
47 |
-
| FFNet-54S-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE |
|
48 |
-
| FFNet-54S-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE |
|
49 |
-
| FFNet-54S-Quantized | SA7255P ADP | SA7255P | TFLITE | 127.
|
50 |
-
| FFNet-54S-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 11.
|
51 |
-
| FFNet-54S-Quantized | SA8295P ADP | SA8295P | TFLITE | 16.
|
52 |
-
| FFNet-54S-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 11.
|
53 |
-
| FFNet-54S-Quantized | SA8775P ADP | SA8775P | TFLITE | 14.
|
54 |
-
| FFNet-54S-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 12.
|
55 |
-
| FFNet-54S-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 14.
|
56 |
|
57 |
|
58 |
|
59 |
|
60 |
## Installation
|
61 |
|
62 |
-
This model can be installed as a Python package via pip.
|
63 |
|
|
|
64 |
```bash
|
65 |
-
pip install "qai-hub-models[
|
66 |
```
|
67 |
|
68 |
|
69 |
-
|
70 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
71 |
|
72 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
@@ -117,8 +116,8 @@ Profiling Results
|
|
117 |
FFNet-54S-Quantized
|
118 |
Device : Samsung Galaxy S23 (13)
|
119 |
Runtime : TFLITE
|
120 |
-
Estimated inference time (ms) : 11.
|
121 |
-
Estimated peak memory usage (MB): [1,
|
122 |
Total # Ops : 117
|
123 |
Compute Unit(s) : NPU (117 ops)
|
124 |
```
|
@@ -145,7 +144,7 @@ from qai_hub_models.models.ffnet_54s_quantized import Model
|
|
145 |
torch_model = Model.from_pretrained()
|
146 |
|
147 |
# Device
|
148 |
-
device = hub.Device("Samsung Galaxy
|
149 |
|
150 |
# Trace model
|
151 |
input_shape = torch_model.get_input_spec()
|
@@ -237,7 +236,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
237 |
|
238 |
|
239 |
## License
|
240 |
-
* The license for the original implementation of FFNet-54S-Quantized can be found
|
|
|
241 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
242 |
|
243 |
|
|
|
37 |
|
38 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
|---|---|---|---|---|---|---|---|---|
|
40 |
+
| FFNet-54S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 11.134 ms | 1 - 12 MB | INT8 | NPU | [FFNet-54S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.tflite) |
|
41 |
+
| FFNet-54S-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 14.134 ms | 6 - 33 MB | INT8 | NPU | [FFNet-54S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.onnx) |
|
42 |
+
| FFNet-54S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 8.062 ms | 1 - 35 MB | INT8 | NPU | [FFNet-54S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.tflite) |
|
43 |
+
| FFNet-54S-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 10.329 ms | 6 - 56 MB | INT8 | NPU | [FFNet-54S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.onnx) |
|
44 |
+
| FFNet-54S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 8.24 ms | 0 - 35 MB | INT8 | NPU | [FFNet-54S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.tflite) |
|
45 |
+
| FFNet-54S-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 9.412 ms | 8 - 53 MB | INT8 | NPU | [FFNet-54S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.onnx) |
|
46 |
+
| FFNet-54S-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 44.939 ms | 1 - 38 MB | INT8 | NPU | [FFNet-54S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.tflite) |
|
47 |
+
| FFNet-54S-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 321.494 ms | 1 - 4 MB | INT8 | NPU | [FFNet-54S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.tflite) |
|
48 |
+
| FFNet-54S-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 11.195 ms | 1 - 14 MB | INT8 | NPU | [FFNet-54S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.tflite) |
|
49 |
+
| FFNet-54S-Quantized | SA7255P ADP | SA7255P | TFLITE | 127.313 ms | 1 - 28 MB | INT8 | NPU | [FFNet-54S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.tflite) |
|
50 |
+
| FFNet-54S-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 11.113 ms | 1 - 19 MB | INT8 | NPU | [FFNet-54S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.tflite) |
|
51 |
+
| FFNet-54S-Quantized | SA8295P ADP | SA8295P | TFLITE | 16.588 ms | 1 - 35 MB | INT8 | NPU | [FFNet-54S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.tflite) |
|
52 |
+
| FFNet-54S-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 11.119 ms | 1 - 14 MB | INT8 | NPU | [FFNet-54S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.tflite) |
|
53 |
+
| FFNet-54S-Quantized | SA8775P ADP | SA8775P | TFLITE | 14.185 ms | 0 - 27 MB | INT8 | NPU | [FFNet-54S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.tflite) |
|
54 |
+
| FFNet-54S-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 12.748 ms | 1 - 36 MB | INT8 | NPU | [FFNet-54S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.tflite) |
|
55 |
+
| FFNet-54S-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 14.671 ms | 14 - 14 MB | INT8 | NPU | [FFNet-54S-Quantized.onnx](https://huggingface.co/qualcomm/FFNet-54S-Quantized/blob/main/FFNet-54S-Quantized.onnx) |
|
56 |
|
57 |
|
58 |
|
59 |
|
60 |
## Installation
|
61 |
|
|
|
62 |
|
63 |
+
Install the package via pip:
|
64 |
```bash
|
65 |
+
pip install "qai-hub-models[ffnet-54s-quantized]"
|
66 |
```
|
67 |
|
68 |
|
|
|
69 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
70 |
|
71 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
|
|
116 |
FFNet-54S-Quantized
|
117 |
Device : Samsung Galaxy S23 (13)
|
118 |
Runtime : TFLITE
|
119 |
+
Estimated inference time (ms) : 11.1
|
120 |
+
Estimated peak memory usage (MB): [1, 12]
|
121 |
Total # Ops : 117
|
122 |
Compute Unit(s) : NPU (117 ops)
|
123 |
```
|
|
|
144 |
torch_model = Model.from_pretrained()
|
145 |
|
146 |
# Device
|
147 |
+
device = hub.Device("Samsung Galaxy S24")
|
148 |
|
149 |
# Trace model
|
150 |
input_shape = torch_model.get_input_spec()
|
|
|
236 |
|
237 |
|
238 |
## License
|
239 |
+
* The license for the original implementation of FFNet-54S-Quantized can be found
|
240 |
+
[here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE).
|
241 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
242 |
|
243 |
|