File size: 18,388 Bytes
1ca3652
 
dc9ebd3
1ca3652
 
 
a7ea068
1ca3652
 
 
e70eebf
1ca3652
 
 
 
e882320
1ca3652
 
6efdd13
e882320
 
1ca3652
 
 
 
 
3dfbaf7
1ca3652
 
dc9ebd3
1ca3652
 
 
 
dc9ebd3
211bce9
1ca3652
dc9ebd3
aa829d1
4b09f8f
40ea584
4b09f8f
40ea584
4b09f8f
40ea584
 
4b09f8f
40ea584
4b09f8f
40ea584
4b09f8f
40ea584
4b09f8f
40ea584
4b09f8f
40ea584
4b09f8f
40ea584
4b09f8f
40ea584
 
4b09f8f
40ea584
 
4b09f8f
40ea584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b09f8f
40ea584
 
 
 
 
 
 
 
 
1ca3652
b704bc2
 
1ca3652
 
 
 
98c2ea2
1ca3652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dfbaf7
b704bc2
 
1ca3652
 
b704bc2
1ca3652
 
 
 
 
 
 
 
 
 
 
 
bf9cf75
1ca3652
 
bf9cf75
1ca3652
 
98c2ea2
1ca3652
bf9cf75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca3652
 
 
 
 
 
 
 
 
 
 
 
71c51e5
 
 
77c84f7
1ca3652
 
 
 
 
 
 
 
 
71c51e5
 
 
 
77c84f7
1ca3652
 
 
 
 
 
e70eebf
1ca3652
 
b704bc2
1ca3652
 
 
 
 
f5ee2ed
1ca3652
 
 
 
 
f5ee2ed
1ca3652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa829d1
1ca3652
98c2ea2
 
aa829d1
 
 
1ca3652
 
 
 
 
aa829d1
 
1ca3652
66f1506
1ca3652
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
---
library_name: pytorch
license: other
tags:
- backbone
- android
pipeline_tag: image-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/resnext50/web-assets/model_demo.png)

# ResNeXt50: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone


ResNeXt50 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of ResNeXt50 found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py).


This repository provides scripts to run ResNeXt50 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/resnext50).



### Model Details

- **Model Type:** Model_use_case.image_classification
- **Model Stats:**
  - Model checkpoint: Imagenet
  - Input resolution: 224x224
  - Number of parameters: 25.0M
  - Model size (float): 95.4 MB
  - Model size (w8a8): 24.8 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| ResNeXt50 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 12.155 ms | 0 - 85 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.tflite) |
| ResNeXt50 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 11.916 ms | 1 - 45 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.dlc) |
| ResNeXt50 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.376 ms | 0 - 92 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.tflite) |
| ResNeXt50 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 3.85 ms | 1 - 41 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.dlc) |
| ResNeXt50 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.48 ms | 0 - 25 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.tflite) |
| ResNeXt50 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.445 ms | 1 - 15 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.dlc) |
| ResNeXt50 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 2.448 ms | 0 - 126 MB | NPU | [ResNeXt50.onnx.zip](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.onnx.zip) |
| ResNeXt50 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 3.932 ms | 0 - 86 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.tflite) |
| ResNeXt50 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 3.735 ms | 1 - 45 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.dlc) |
| ResNeXt50 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 12.155 ms | 0 - 85 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.tflite) |
| ResNeXt50 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 11.916 ms | 1 - 45 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.dlc) |
| ResNeXt50 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.51 ms | 0 - 282 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.tflite) |
| ResNeXt50 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.45 ms | 1 - 15 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.dlc) |
| ResNeXt50 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 4.041 ms | 0 - 84 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.tflite) |
| ResNeXt50 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3.986 ms | 0 - 35 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.dlc) |
| ResNeXt50 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.517 ms | 0 - 274 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.tflite) |
| ResNeXt50 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.444 ms | 1 - 17 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.dlc) |
| ResNeXt50 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 3.932 ms | 0 - 86 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.tflite) |
| ResNeXt50 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 3.735 ms | 1 - 45 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.dlc) |
| ResNeXt50 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 2.489 ms | 0 - 287 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.tflite) |
| ResNeXt50 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 2.457 ms | 1 - 15 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.dlc) |
| ResNeXt50 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 2.448 ms | 0 - 125 MB | NPU | [ResNeXt50.onnx.zip](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.onnx.zip) |
| ResNeXt50 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.769 ms | 0 - 89 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.tflite) |
| ResNeXt50 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.769 ms | 1 - 51 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.dlc) |
| ResNeXt50 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.817 ms | 0 - 47 MB | NPU | [ResNeXt50.onnx.zip](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.onnx.zip) |
| ResNeXt50 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.631 ms | 0 - 87 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.tflite) |
| ResNeXt50 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.659 ms | 1 - 49 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.dlc) |
| ResNeXt50 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 1.796 ms | 1 - 47 MB | NPU | [ResNeXt50.onnx.zip](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.onnx.zip) |
| ResNeXt50 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.629 ms | 168 - 168 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.dlc) |
| ResNeXt50 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.442 ms | 51 - 51 MB | NPU | [ResNeXt50.onnx.zip](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50.onnx.zip) |
| ResNeXt50 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 2.143 ms | 0 - 48 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 2.419 ms | 0 - 49 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |
| ResNeXt50 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.081 ms | 0 - 60 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.433 ms | 0 - 63 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |
| ResNeXt50 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.896 ms | 0 - 92 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.101 ms | 0 - 15 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |
| ResNeXt50 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.24 ms | 0 - 48 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.441 ms | 0 - 49 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |
| ResNeXt50 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 2.994 ms | 0 - 64 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 4.861 ms | 0 - 69 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |
| ResNeXt50 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 76.002 ms | 0 - 130 MB | GPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 2.143 ms | 0 - 48 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 2.419 ms | 0 - 49 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |
| ResNeXt50 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.896 ms | 0 - 92 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.085 ms | 0 - 18 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |
| ResNeXt50 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.463 ms | 0 - 55 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.723 ms | 0 - 56 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |
| ResNeXt50 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.902 ms | 0 - 92 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.093 ms | 0 - 20 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |
| ResNeXt50 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.24 ms | 0 - 48 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.441 ms | 0 - 49 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |
| ResNeXt50 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.901 ms | 0 - 93 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.102 ms | 0 - 21 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |
| ResNeXt50 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.679 ms | 0 - 60 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.821 ms | 0 - 60 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |
| ResNeXt50 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.59 ms | 0 - 56 MB | NPU | [ResNeXt50.tflite](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.tflite) |
| ResNeXt50 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.715 ms | 0 - 55 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |
| ResNeXt50 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.215 ms | 67 - 67 MB | NPU | [ResNeXt50.dlc](https://huggingface.co/qualcomm/ResNeXt50/blob/main/ResNeXt50_w8a8.dlc) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.resnext50.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.resnext50.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.resnext50.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/resnext50/qai_hub_models/models/ResNeXt50/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.resnext50 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.resnext50.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.resnext50.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on ResNeXt50's performance across various devices [here](https://aihub.qualcomm.com/models/resnext50).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of ResNeXt50 can be found
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/abs/1611.05431)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).