Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -35,45 +35,42 @@ More details on model performance across various devices, can be found
|
|
35 |
|
36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
|---|---|---|---|---|---|---|---|---|
|
38 |
-
| YOLOv8-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 5.
|
39 |
-
| YOLOv8-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 5.
|
40 |
-
| YOLOv8-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 6.
|
41 |
-
| YOLOv8-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 3.
|
42 |
-
| YOLOv8-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 3.
|
43 |
-
| YOLOv8-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.
|
44 |
-
| YOLOv8-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 3.
|
45 |
-
| YOLOv8-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN |
|
46 |
-
| YOLOv8-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX |
|
47 |
-
| YOLOv8-Detection | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 5.
|
48 |
-
| YOLOv8-Detection | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 5.
|
49 |
-
| YOLOv8-Detection | SA7255P ADP | SA7255P |
|
50 |
-
| YOLOv8-Detection |
|
51 |
-
| YOLOv8-Detection | SA8255 (Proxy) | SA8255P Proxy |
|
52 |
-
| YOLOv8-Detection |
|
53 |
-
| YOLOv8-Detection | SA8295P ADP | SA8295P |
|
54 |
-
| YOLOv8-Detection |
|
55 |
-
| YOLOv8-Detection | SA8650 (Proxy) | SA8650P Proxy |
|
56 |
-
| YOLOv8-Detection |
|
57 |
-
| YOLOv8-Detection | SA8775P ADP | SA8775P |
|
58 |
-
| YOLOv8-Detection |
|
59 |
-
| YOLOv8-Detection | QCS8450 (Proxy) | QCS8450 Proxy |
|
60 |
-
| YOLOv8-Detection |
|
61 |
-
| YOLOv8-Detection | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.527 ms | 5 - 5 MB | FP16 | NPU | Use Export Script |
|
62 |
-
| YOLOv8-Detection | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.703 ms | 5 - 5 MB | FP16 | NPU | [YOLOv8-Detection.onnx](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.onnx) |
|
63 |
|
64 |
|
65 |
|
66 |
|
67 |
## Installation
|
68 |
|
69 |
-
This model can be installed as a Python package via pip.
|
70 |
|
|
|
71 |
```bash
|
72 |
-
pip install "qai-hub-models[
|
73 |
```
|
74 |
|
75 |
|
76 |
-
|
77 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
78 |
|
79 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
@@ -152,7 +149,7 @@ from qai_hub_models.models.yolov8_det import Model
|
|
152 |
torch_model = Model.from_pretrained()
|
153 |
|
154 |
# Device
|
155 |
-
device = hub.Device("Samsung Galaxy
|
156 |
|
157 |
# Trace model
|
158 |
input_shape = torch_model.get_input_spec()
|
@@ -244,7 +241,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
244 |
|
245 |
|
246 |
## License
|
247 |
-
* The license for the original implementation of YOLOv8-Detection can be found
|
|
|
248 |
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)
|
249 |
|
250 |
|
|
|
35 |
|
36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
|---|---|---|---|---|---|---|---|---|
|
38 |
+
| YOLOv8-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 5.178 ms | 0 - 17 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.tflite) |
|
39 |
+
| YOLOv8-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 5.26 ms | 5 - 19 MB | FP16 | NPU | [YOLOv8-Detection.so](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.so) |
|
40 |
+
| YOLOv8-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 6.202 ms | 1 - 35 MB | FP16 | NPU | [YOLOv8-Detection.onnx](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.onnx) |
|
41 |
+
| YOLOv8-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 3.714 ms | 0 - 44 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.tflite) |
|
42 |
+
| YOLOv8-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 3.68 ms | 5 - 56 MB | FP16 | NPU | [YOLOv8-Detection.so](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.so) |
|
43 |
+
| YOLOv8-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.316 ms | 5 - 65 MB | FP16 | NPU | [YOLOv8-Detection.onnx](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.onnx) |
|
44 |
+
| YOLOv8-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 3.692 ms | 0 - 42 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.tflite) |
|
45 |
+
| YOLOv8-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.995 ms | 5 - 52 MB | FP16 | NPU | Use Export Script |
|
46 |
+
| YOLOv8-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 3.965 ms | 5 - 55 MB | FP16 | NPU | [YOLOv8-Detection.onnx](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.onnx) |
|
47 |
+
| YOLOv8-Detection | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 5.148 ms | 0 - 17 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.tflite) |
|
48 |
+
| YOLOv8-Detection | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 5.076 ms | 5 - 8 MB | FP16 | NPU | Use Export Script |
|
49 |
+
| YOLOv8-Detection | SA7255P ADP | SA7255P | QNN | 70.855 ms | 1 - 9 MB | FP16 | NPU | Use Export Script |
|
50 |
+
| YOLOv8-Detection | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 5.168 ms | 0 - 17 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.tflite) |
|
51 |
+
| YOLOv8-Detection | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.986 ms | 5 - 8 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| YOLOv8-Detection | SA8295P ADP | SA8295P | TFLITE | 9.951 ms | 0 - 35 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.tflite) |
|
53 |
+
| YOLOv8-Detection | SA8295P ADP | SA8295P | QNN | 8.997 ms | 0 - 14 MB | FP16 | NPU | Use Export Script |
|
54 |
+
| YOLOv8-Detection | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 5.159 ms | 0 - 16 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.tflite) |
|
55 |
+
| YOLOv8-Detection | SA8650 (Proxy) | SA8650P Proxy | QNN | 5.073 ms | 5 - 7 MB | FP16 | NPU | Use Export Script |
|
56 |
+
| YOLOv8-Detection | SA8775P ADP | SA8775P | TFLITE | 8.134 ms | 0 - 36 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.tflite) |
|
57 |
+
| YOLOv8-Detection | SA8775P ADP | SA8775P | QNN | 8.015 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
|
58 |
+
| YOLOv8-Detection | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 8.579 ms | 0 - 35 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.tflite) |
|
59 |
+
| YOLOv8-Detection | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 7.708 ms | 5 - 44 MB | FP16 | NPU | Use Export Script |
|
60 |
+
| YOLOv8-Detection | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.684 ms | 5 - 5 MB | FP16 | NPU | [YOLOv8-Detection.onnx](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.onnx) |
|
|
|
|
|
61 |
|
62 |
|
63 |
|
64 |
|
65 |
## Installation
|
66 |
|
|
|
67 |
|
68 |
+
Install the package via pip:
|
69 |
```bash
|
70 |
+
pip install "qai-hub-models[yolov8-det]"
|
71 |
```
|
72 |
|
73 |
|
|
|
74 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
75 |
|
76 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
|
|
149 |
torch_model = Model.from_pretrained()
|
150 |
|
151 |
# Device
|
152 |
+
device = hub.Device("Samsung Galaxy S24")
|
153 |
|
154 |
# Trace model
|
155 |
input_shape = torch_model.get_input_spec()
|
|
|
241 |
|
242 |
|
243 |
## License
|
244 |
+
* The license for the original implementation of YOLOv8-Detection can be found
|
245 |
+
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
|
246 |
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)
|
247 |
|
248 |
|