File size: 13,162 Bytes
ff9a1e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bert-base-finetuned-ner-covidmed-v3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-finetuned-ner-covidmed-v3

This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1759
- Accuracy: 0.9552
- Precision: 0.8111
- Recall: 0.8378
- F1: 0.8238
- Age Precision: 0.9002
- Age Recall: 0.9759
- Age F1-score: 0.9365
- Date Precision: 0.9651
- Date Recall: 0.9867
- Date F1-score: 0.9758
- Gender Precision: 0.9165
- Gender Recall: 0.9502
- Gender F1-score: 0.9330
- Job Precision: 0.4444
- Job Recall: 0.4162
- Job F1-score: 0.4299
- Location Precision: 0.8167
- Location Recall: 0.8791
- Location F1-score: 0.8468
- Name Precision: 0.8328
- Name Recall: 0.7987
- Name F1-score: 0.8154
- Organization Precision: 0.6818
- Organization Recall: 0.7393
- Organization F1-score: 0.7094
- Patient Id Precision: 0.96
- Patient Id Recall: 0.9815
- Patient Id F1-score: 0.9707
- Symptom And Disease Precision: 0.6834
- Symptom And Disease Recall: 0.7544
- Symptom And Disease F1-score: 0.7172
- Transportation Precision: 0.9105
- Transportation Recall: 0.8964
- Transportation F1-score: 0.9034
- Micro avg Precision: 0.8432
- Micro avg Recall: 0.8894
- Micro avg F1-score: 0.8657
- Macro avg Precision: 0.8111
- Macro avg Recall: 0.8378
- Macro avg F1-score: 0.8238
- Weighted avg Precision: 0.8449
- Weighted avg Recall: 0.8894
- Weighted avg F1-score: 0.8663

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Age Precision | Age Recall | Age F1-score | Date Precision | Date Recall | Date F1-score | Gender Precision | Gender Recall | Gender F1-score | Job Precision | Job Recall | Job F1-score | Location Precision | Location Recall | Location F1-score | Name Precision | Name Recall | Name F1-score | Organization Precision | Organization Recall | Organization F1-score | Patient Id Precision | Patient Id Recall | Patient Id F1-score | Symptom And Disease Precision | Symptom And Disease Recall | Symptom And Disease F1-score | Transportation Precision | Transportation Recall | Transportation F1-score | Micro avg Precision | Micro avg Recall | Micro avg F1-score | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------------:|:----------:|:------------:|:--------------:|:-----------:|:-------------:|:----------------:|:-------------:|:---------------:|:-------------:|:----------:|:------------:|:------------------:|:---------------:|:-----------------:|:--------------:|:-----------:|:-------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:-----------------:|:-------------------:|:-----------------------------:|:--------------------------:|:----------------------------:|:------------------------:|:---------------------:|:-----------------------:|:-------------------:|:----------------:|:------------------:|:-------------------:|:----------------:|:------------------:|:----------------------:|:-------------------:|:---------------------:|
| No log        | 1.0   | 79   | 0.4545          | 0.8761   | 0.5390    | 0.4408 | 0.4548 | 0.9162        | 0.8076     | 0.8584       | 0.9329         | 0.9674      | 0.9498        | 0.9947           | 0.4026        | 0.5732          | 0.0           | 0.0        | 0.0          | 0.4892             | 0.6845          | 0.5706            | 0.0            | 0.0         | 0.0           | 0.1727                 | 0.1855              | 0.1789                | 0.7334               | 0.9716            | 0.8359              | 0.2827                        | 0.0836                     | 0.1291                       | 0.8676                   | 0.3057                | 0.4521                  | 0.6025              | 0.6426           | 0.6219             | 0.5390              | 0.4408           | 0.4548             | 0.5795                 | 0.6426              | 0.5895                |
| No log        | 2.0   | 158  | 0.2802          | 0.9247   | 0.6951    | 0.6739 | 0.6795 | 0.8503        | 0.9467     | 0.8959       | 0.9489         | 0.9764      | 0.9625        | 0.9442           | 0.8788        | 0.9103          | 0.0           | 0.0        | 0.0          | 0.6492             | 0.7951          | 0.7148            | 0.9211         | 0.6604      | 0.7692        | 0.4086                 | 0.3943              | 0.4013                | 0.8775               | 0.9751            | 0.9237              | 0.5778                        | 0.5264                     | 0.5509                       | 0.7740                   | 0.5855                | 0.6667                  | 0.7367              | 0.7911           | 0.7629             | 0.6951              | 0.6739           | 0.6795             | 0.7292                 | 0.7911              | 0.7558                |
| No log        | 3.0   | 237  | 0.2240          | 0.9387   | 0.7115    | 0.7248 | 0.7169 | 0.8728        | 0.9553     | 0.9122       | 0.9583         | 0.9861      | 0.9720        | 0.9226           | 0.9026        | 0.9125          | 0.0           | 0.0        | 0.0          | 0.7230             | 0.8253          | 0.7708            | 0.8791         | 0.7547      | 0.8122        | 0.5168                 | 0.5175              | 0.5172                | 0.9230               | 0.9741            | 0.9478              | 0.5992                        | 0.6540                     | 0.6254                       | 0.7198                   | 0.6788                | 0.6987                  | 0.7821              | 0.8296           | 0.8051             | 0.7115              | 0.7248           | 0.7169             | 0.7736                 | 0.8296              | 0.7998                |
| No log        | 4.0   | 316  | 0.2049          | 0.9414   | 0.7569    | 0.7707 | 0.7521 | 0.8650        | 0.9691     | 0.9141       | 0.9702         | 0.9849      | 0.9775        | 0.9281           | 0.9221        | 0.9251          | 0.44          | 0.1272     | 0.1973       | 0.7257             | 0.8543          | 0.7848            | 0.8507         | 0.7704      | 0.8086        | 0.5489                 | 0.5901              | 0.5687                | 0.9469               | 0.9776            | 0.9620              | 0.5176                        | 0.7394                     | 0.6089                       | 0.7760                   | 0.7720                | 0.7740                  | 0.7715              | 0.8593           | 0.8131             | 0.7569              | 0.7707           | 0.7521             | 0.7811                 | 0.8593              | 0.8147                |
| No log        | 5.0   | 395  | 0.1930          | 0.9460   | 0.7398    | 0.8172 | 0.7750 | 0.8228        | 0.9811     | 0.8950       | 0.9589         | 0.9873      | 0.9729        | 0.8519           | 0.9589        | 0.9022          | 0.2796        | 0.3006     | 0.2897       | 0.7646             | 0.8593          | 0.8092            | 0.7885         | 0.7736      | 0.7810        | 0.5462                 | 0.7211              | 0.6216                | 0.9381               | 0.9820            | 0.9596              | 0.5961                        | 0.7482                     | 0.6635                       | 0.8513                   | 0.8601                | 0.8557                  | 0.7838              | 0.8779           | 0.8282             | 0.7398              | 0.8172           | 0.7750             | 0.7922                 | 0.8779              | 0.8318                |
| No log        | 6.0   | 474  | 0.1787          | 0.9526   | 0.7912    | 0.8224 | 0.8048 | 0.8698        | 0.9759     | 0.9198       | 0.9640         | 0.9879      | 0.9758        | 0.9062           | 0.9416        | 0.9236          | 0.4351        | 0.3295     | 0.3750       | 0.8163             | 0.8606          | 0.8379            | 0.8092         | 0.7736      | 0.7910        | 0.6345                 | 0.7497              | 0.6873                | 0.9512               | 0.9810            | 0.9659              | 0.6445                        | 0.7438                     | 0.6906                       | 0.8808                   | 0.8808                | 0.8808                  | 0.8305              | 0.8796           | 0.8544             | 0.7912              | 0.8224           | 0.8048             | 0.8330                 | 0.8796              | 0.8551                |
| 0.249         | 7.0   | 553  | 0.1752          | 0.9538   | 0.8068    | 0.8268 | 0.8158 | 0.9217        | 0.9708     | 0.9456       | 0.9668         | 0.9873      | 0.9770        | 0.9236           | 0.9416        | 0.9325          | 0.4362        | 0.3757     | 0.4037       | 0.8018             | 0.8710          | 0.8350            | 0.8339         | 0.7893      | 0.8110        | 0.6623                 | 0.7173              | 0.6887                | 0.9572               | 0.9805            | 0.9687              | 0.6605                        | 0.7535                     | 0.7039                       | 0.9043                   | 0.8808                | 0.8924                  | 0.8343              | 0.8830           | 0.8580             | 0.8068              | 0.8268           | 0.8158             | 0.8367                 | 0.8830              | 0.8588                |
| 0.249         | 8.0   | 632  | 0.1741          | 0.9546   | 0.8080    | 0.8319 | 0.8190 | 0.8891        | 0.9777     | 0.9313       | 0.9663         | 0.9873      | 0.9767        | 0.9197           | 0.9416        | 0.9305          | 0.4351        | 0.3873     | 0.4098       | 0.8158             | 0.8674          | 0.8408            | 0.8523         | 0.7987      | 0.8247        | 0.6421                 | 0.7471              | 0.6906                | 0.96                 | 0.9815            | 0.9707              | 0.6948                        | 0.7394                     | 0.7164                       | 0.9053                   | 0.8912                | 0.8982                  | 0.8412              | 0.8833           | 0.8618             | 0.8080              | 0.8319           | 0.8190             | 0.8431                 | 0.8833              | 0.8624                |
| 0.249         | 9.0   | 711  | 0.1783          | 0.9556   | 0.8154    | 0.8331 | 0.8236 | 0.9171        | 0.9691     | 0.9424       | 0.9668         | 0.9873      | 0.9770        | 0.9333           | 0.9394        | 0.9364          | 0.4444        | 0.3931     | 0.4172       | 0.8240             | 0.8762          | 0.8493            | 0.8333         | 0.8019      | 0.8173        | 0.6907                 | 0.7328              | 0.7111                | 0.9610               | 0.9820            | 0.9714              | 0.6785                        | 0.7579                     | 0.7160                       | 0.9053                   | 0.8912                | 0.8982                  | 0.8482              | 0.8873           | 0.8673             | 0.8154              | 0.8331           | 0.8236             | 0.8496                 | 0.8873              | 0.8678                |
| 0.249         | 10.0  | 790  | 0.1759          | 0.9552   | 0.8111    | 0.8378 | 0.8238 | 0.9002        | 0.9759     | 0.9365       | 0.9651         | 0.9867      | 0.9758        | 0.9165           | 0.9502        | 0.9330          | 0.4444        | 0.4162     | 0.4299       | 0.8167             | 0.8791          | 0.8468            | 0.8328         | 0.7987      | 0.8154        | 0.6818                 | 0.7393              | 0.7094                | 0.96                 | 0.9815            | 0.9707              | 0.6834                        | 0.7544                     | 0.7172                       | 0.9105                   | 0.8964                | 0.9034                  | 0.8432              | 0.8894           | 0.8657             | 0.8111              | 0.8378           | 0.8238             | 0.8449                 | 0.8894              | 0.8663                |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1