File size: 7,837 Bytes
d01e81c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: xlm-large-finetuned-ner-covidmed-v5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-large-finetuned-ner-covidmed-v5

This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0778
- Accuracy: 0.9818
- Precision: 0.9105
- Recall: 0.9395
- F1: 0.9241
- Age Precision: 0.9692
- Age Recall: 0.9725
- Age F1-score: 0.9708
- Date Precision: 0.9832
- Date Recall: 0.9927
- Date F1-score: 0.9880
- Gender Precision: 0.9539
- Gender Recall: 0.9848
- Gender F1-score: 0.9691
- Job Precision: 0.6667
- Job Recall: 0.8208
- Job F1-score: 0.7358
- Location Precision: 0.9394
- Location Recall: 0.9532
- Location F1-score: 0.9462
- Name Precision: 0.9128
- Name Recall: 0.9214
- Name F1-score: 0.9171
- Organization Precision: 0.8692
- Organization Recall: 0.8962
- Organization F1-score: 0.8825
- Patient Id Precision: 0.9786
- Patient Id Recall: 0.9796
- Patient Id F1-score: 0.9791
- Symptom And Disease Precision: 0.8632
- Symptom And Disease Recall: 0.8944
- Symptom And Disease F1-score: 0.8785
- Transportation Precision: 0.9692
- Transportation Recall: 0.9793
- Transportation F1-score: 0.9742
- Micro avg Precision: 0.9369
- Micro avg Recall: 0.9536
- Micro avg F1-score: 0.9452
- Macro avg Precision: 0.9105
- Macro avg Recall: 0.9395
- Macro avg F1-score: 0.9241
- Weighted avg Precision: 0.9381
- Weighted avg Recall: 0.9536
- Weighted avg F1-score: 0.9457

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Age Precision | Age Recall | Age F1-score | Date Precision | Date Recall | Date F1-score | Gender Precision | Gender Recall | Gender F1-score | Job Precision | Job Recall | Job F1-score | Location Precision | Location Recall | Location F1-score | Name Precision | Name Recall | Name F1-score | Organization Precision | Organization Recall | Organization F1-score | Patient Id Precision | Patient Id Recall | Patient Id F1-score | Symptom And Disease Precision | Symptom And Disease Recall | Symptom And Disease F1-score | Transportation Precision | Transportation Recall | Transportation F1-score | Micro avg Precision | Micro avg Recall | Micro avg F1-score | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------------:|:----------:|:------------:|:--------------:|:-----------:|:-------------:|:----------------:|:-------------:|:---------------:|:-------------:|:----------:|:------------:|:------------------:|:---------------:|:-----------------:|:--------------:|:-----------:|:-------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:-----------------:|:-------------------:|:-----------------------------:|:--------------------------:|:----------------------------:|:------------------------:|:---------------------:|:-----------------------:|:-------------------:|:----------------:|:------------------:|:-------------------:|:----------------:|:------------------:|:----------------------:|:-------------------:|:---------------------:|
| No log        | 1.0   | 158  | 0.0963          | 0.9733   | 0.7903    | 0.9007 | 0.8387 | 0.8174        | 0.9845     | 0.8932       | 0.9814         | 0.9915      | 0.9865        | 0.7897           | 0.9913        | 0.8791          | 0.4495        | 0.7457     | 0.5609       | 0.9119             | 0.9302          | 0.9210            | 0.8216         | 0.8836      | 0.8515        | 0.7558                 | 0.8911              | 0.8179                | 0.9286               | 0.9791            | 0.9531              | 0.7831                        | 0.8741                     | 0.8261                       | 0.6636                   | 0.7358                | 0.6978                  | 0.8717              | 0.9371           | 0.9032             | 0.7903              | 0.9007           | 0.8387             | 0.8790                 | 0.9371              | 0.9059                |
| No log        | 2.0   | 316  | 0.0762          | 0.9797   | 0.8970    | 0.9193 | 0.9078 | 0.9659        | 0.9725     | 0.9692       | 0.9791         | 0.9897      | 0.9844        | 0.9479           | 0.9848        | 0.9660          | 0.6392        | 0.7168     | 0.6757       | 0.9368             | 0.9514          | 0.9440            | 0.8627         | 0.9088      | 0.8851        | 0.8793                 | 0.8885              | 0.8839                | 0.9752               | 0.9791            | 0.9771              | 0.8352                        | 0.8477                     | 0.8414                       | 0.9485                   | 0.9534                | 0.9509                  | 0.9308              | 0.9451           | 0.9379             | 0.8970              | 0.9193           | 0.9078             | 0.9314                 | 0.9451              | 0.9382                |
| No log        | 3.0   | 474  | 0.0761          | 0.9812   | 0.9018    | 0.9405 | 0.9199 | 0.9468        | 0.9794     | 0.9628       | 0.9844         | 0.9933      | 0.9889        | 0.9459           | 0.9848        | 0.9650          | 0.6606        | 0.8439     | 0.7411       | 0.9222             | 0.9525          | 0.9371            | 0.8981         | 0.9151      | 0.9065        | 0.8672                 | 0.8807              | 0.8739                | 0.9729               | 0.9850            | 0.9789              | 0.8555                        | 0.8908                     | 0.8728                       | 0.9643                   | 0.9793                | 0.9717                  | 0.9266              | 0.9536           | 0.9399             | 0.9018              | 0.9405           | 0.9199             | 0.9279                 | 0.9536              | 0.9404                |
| 0.1535        | 4.0   | 632  | 0.0778          | 0.9818   | 0.9105    | 0.9395 | 0.9241 | 0.9692        | 0.9725     | 0.9708       | 0.9832         | 0.9927      | 0.9880        | 0.9539           | 0.9848        | 0.9691          | 0.6667        | 0.8208     | 0.7358       | 0.9394             | 0.9532          | 0.9462            | 0.9128         | 0.9214      | 0.9171        | 0.8692                 | 0.8962              | 0.8825                | 0.9786               | 0.9796            | 0.9791              | 0.8632                        | 0.8944                     | 0.8785                       | 0.9692                   | 0.9793                | 0.9742                  | 0.9369              | 0.9536           | 0.9452             | 0.9105              | 0.9395           | 0.9241             | 0.9381                 | 0.9536              | 0.9457                |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1