--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-large-finetuned-ner-covidmed-v5 results: [] --- # xlm-large-finetuned-ner-covidmed-v5 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0778 - Accuracy: 0.9818 - Precision: 0.9105 - Recall: 0.9395 - F1: 0.9241 - Age Precision: 0.9692 - Age Recall: 0.9725 - Age F1-score: 0.9708 - Date Precision: 0.9832 - Date Recall: 0.9927 - Date F1-score: 0.9880 - Gender Precision: 0.9539 - Gender Recall: 0.9848 - Gender F1-score: 0.9691 - Job Precision: 0.6667 - Job Recall: 0.8208 - Job F1-score: 0.7358 - Location Precision: 0.9394 - Location Recall: 0.9532 - Location F1-score: 0.9462 - Name Precision: 0.9128 - Name Recall: 0.9214 - Name F1-score: 0.9171 - Organization Precision: 0.8692 - Organization Recall: 0.8962 - Organization F1-score: 0.8825 - Patient Id Precision: 0.9786 - Patient Id Recall: 0.9796 - Patient Id F1-score: 0.9791 - Symptom And Disease Precision: 0.8632 - Symptom And Disease Recall: 0.8944 - Symptom And Disease F1-score: 0.8785 - Transportation Precision: 0.9692 - Transportation Recall: 0.9793 - Transportation F1-score: 0.9742 - Micro avg Precision: 0.9369 - Micro avg Recall: 0.9536 - Micro avg F1-score: 0.9452 - Macro avg Precision: 0.9105 - Macro avg Recall: 0.9395 - Macro avg F1-score: 0.9241 - Weighted avg Precision: 0.9381 - Weighted avg Recall: 0.9536 - Weighted avg F1-score: 0.9457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Age Precision | Age Recall | Age F1-score | Date Precision | Date Recall | Date F1-score | Gender Precision | Gender Recall | Gender F1-score | Job Precision | Job Recall | Job F1-score | Location Precision | Location Recall | Location F1-score | Name Precision | Name Recall | Name F1-score | Organization Precision | Organization Recall | Organization F1-score | Patient Id Precision | Patient Id Recall | Patient Id F1-score | Symptom And Disease Precision | Symptom And Disease Recall | Symptom And Disease F1-score | Transportation Precision | Transportation Recall | Transportation F1-score | Micro avg Precision | Micro avg Recall | Micro avg F1-score | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------------:|:----------:|:------------:|:--------------:|:-----------:|:-------------:|:----------------:|:-------------:|:---------------:|:-------------:|:----------:|:------------:|:------------------:|:---------------:|:-----------------:|:--------------:|:-----------:|:-------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:-----------------:|:-------------------:|:-----------------------------:|:--------------------------:|:----------------------------:|:------------------------:|:---------------------:|:-----------------------:|:-------------------:|:----------------:|:------------------:|:-------------------:|:----------------:|:------------------:|:----------------------:|:-------------------:|:---------------------:| | No log | 1.0 | 158 | 0.0963 | 0.9733 | 0.7903 | 0.9007 | 0.8387 | 0.8174 | 0.9845 | 0.8932 | 0.9814 | 0.9915 | 0.9865 | 0.7897 | 0.9913 | 0.8791 | 0.4495 | 0.7457 | 0.5609 | 0.9119 | 0.9302 | 0.9210 | 0.8216 | 0.8836 | 0.8515 | 0.7558 | 0.8911 | 0.8179 | 0.9286 | 0.9791 | 0.9531 | 0.7831 | 0.8741 | 0.8261 | 0.6636 | 0.7358 | 0.6978 | 0.8717 | 0.9371 | 0.9032 | 0.7903 | 0.9007 | 0.8387 | 0.8790 | 0.9371 | 0.9059 | | No log | 2.0 | 316 | 0.0762 | 0.9797 | 0.8970 | 0.9193 | 0.9078 | 0.9659 | 0.9725 | 0.9692 | 0.9791 | 0.9897 | 0.9844 | 0.9479 | 0.9848 | 0.9660 | 0.6392 | 0.7168 | 0.6757 | 0.9368 | 0.9514 | 0.9440 | 0.8627 | 0.9088 | 0.8851 | 0.8793 | 0.8885 | 0.8839 | 0.9752 | 0.9791 | 0.9771 | 0.8352 | 0.8477 | 0.8414 | 0.9485 | 0.9534 | 0.9509 | 0.9308 | 0.9451 | 0.9379 | 0.8970 | 0.9193 | 0.9078 | 0.9314 | 0.9451 | 0.9382 | | No log | 3.0 | 474 | 0.0761 | 0.9812 | 0.9018 | 0.9405 | 0.9199 | 0.9468 | 0.9794 | 0.9628 | 0.9844 | 0.9933 | 0.9889 | 0.9459 | 0.9848 | 0.9650 | 0.6606 | 0.8439 | 0.7411 | 0.9222 | 0.9525 | 0.9371 | 0.8981 | 0.9151 | 0.9065 | 0.8672 | 0.8807 | 0.8739 | 0.9729 | 0.9850 | 0.9789 | 0.8555 | 0.8908 | 0.8728 | 0.9643 | 0.9793 | 0.9717 | 0.9266 | 0.9536 | 0.9399 | 0.9018 | 0.9405 | 0.9199 | 0.9279 | 0.9536 | 0.9404 | | 0.1535 | 4.0 | 632 | 0.0778 | 0.9818 | 0.9105 | 0.9395 | 0.9241 | 0.9692 | 0.9725 | 0.9708 | 0.9832 | 0.9927 | 0.9880 | 0.9539 | 0.9848 | 0.9691 | 0.6667 | 0.8208 | 0.7358 | 0.9394 | 0.9532 | 0.9462 | 0.9128 | 0.9214 | 0.9171 | 0.8692 | 0.8962 | 0.8825 | 0.9786 | 0.9796 | 0.9791 | 0.8632 | 0.8944 | 0.8785 | 0.9692 | 0.9793 | 0.9742 | 0.9369 | 0.9536 | 0.9452 | 0.9105 | 0.9395 | 0.9241 | 0.9381 | 0.9536 | 0.9457 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1