Upload folder using huggingface_hub
Browse files- README.md +31 -130
- eole-config.yaml +99 -0
- eole_model/config.json +150 -0
- eole_model/model.00.safetensors +3 -0
- eole_model/src.spm.model +3 -0
- eole_model/tgt.spm.model +3 -0
- eole_model/vocab.json +0 -0
- model.bin +2 -2
- source_vocabulary.json +0 -0
- src.spm.model +2 -2
- target_vocabulary.json +0 -0
- tgt.spm.model +2 -2
README.md
CHANGED
@@ -21,34 +21,40 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: BLEU
|
23 |
type: bleu
|
24 |
-
value:
|
25 |
- name: CHRF
|
26 |
type: chrf
|
27 |
-
value:
|
28 |
---
|
29 |
|
30 |
|
31 |
# `quickmt-zh-en` Neural Machine Translation Model
|
32 |
|
33 |
-
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
```bash
|
38 |
git clone https://github.com/quickmt/quickmt.git
|
39 |
pip install ./quickmt/
|
40 |
-
```
|
41 |
|
42 |
-
## Download model
|
43 |
-
|
44 |
-
```bash
|
45 |
quickmt-model-download quickmt/quickmt-zh-en ./quickmt-zh-en
|
46 |
```
|
47 |
|
48 |
-
## Use model
|
49 |
-
|
50 |
-
Inference with `quickmt`:
|
51 |
-
|
52 |
```python
|
53 |
from quickmt import Translator
|
54 |
|
@@ -63,125 +69,20 @@ t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但
|
|
63 |
t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
|
64 |
```
|
65 |
|
66 |
-
The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use
|
67 |
|
68 |
-
# Model Information
|
69 |
-
|
70 |
-
* Trained using [`eole`](https://github.com/eole-nlp/eole)
|
71 |
-
- It took about 1 day on a single RTX 4090 on [vast.ai](https://cloud.vast.ai)
|
72 |
-
* Exported for fast inference to []CTranslate2](https://github.com/OpenNMT/CTranslate2) format
|
73 |
-
* Training data: https://huggingface.co/datasets/quickmt/quickmt-train.zh-en/tree/main
|
74 |
|
75 |
## Metrics
|
76 |
|
77 |
-
BLEU and CHRF2 calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the Flores200 `devtest` test set ("zho_Hans"->"eng_Latn").
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
88 |
-
|
89 |
-
| facebook/nllb-200-distilled-1.3B | 28.54 | 57.34 | 23.6 |
|
90 |
-
| facebook/m2m100_1.2B | 24.68 | 54.68 | 25.7 |
|
91 |
-
| google/madlad400-3b-mt | 28.74 | 58.01 | ??? |
|
92 |
-
|
93 |
-
`quickmt-zh-en` is the fastest and delivers fairly high quality.
|
94 |
-
|
95 |
-
Helsinki-NLP/opus-mt-zh-en is one of the most downloaded machine translation models on HuggingFace, and this model is considerably more accurate *and* a bit faster.
|
96 |
-
|
97 |
-
|
98 |
-
## Training Configuration
|
99 |
-
|
100 |
-
```yaml
|
101 |
-
### Vocab
|
102 |
-
src_vocab_size: 20000
|
103 |
-
tgt_vocab_size: 20000
|
104 |
-
share_vocab: False
|
105 |
-
|
106 |
-
data:
|
107 |
-
corpus_1:
|
108 |
-
path_src: hf://quickmt/quickmt-train-zh-en/zh
|
109 |
-
path_tgt: hf://quickmt/quickmt-train-zh-en/en
|
110 |
-
path_sco: hf://quickmt/quickmt-train-zh-en/sco
|
111 |
-
valid:
|
112 |
-
path_src: zh-en/dev.zho
|
113 |
-
path_tgt: zh-en/dev.eng
|
114 |
-
|
115 |
-
transforms: [sentencepiece, filtertoolong]
|
116 |
-
transforms_configs:
|
117 |
-
sentencepiece:
|
118 |
-
src_subword_model: "zh-en/src.spm.model"
|
119 |
-
tgt_subword_model: "zh-en/tgt.spm.model"
|
120 |
-
filtertoolong:
|
121 |
-
src_seq_length: 512
|
122 |
-
tgt_seq_length: 512
|
123 |
-
|
124 |
-
training:
|
125 |
-
# Run configuration
|
126 |
-
model_path: quickmt-zh-en
|
127 |
-
keep_checkpoint: 4
|
128 |
-
save_checkpoint_steps: 1000
|
129 |
-
train_steps: 104000
|
130 |
-
valid_steps: 1000
|
131 |
-
|
132 |
-
# Train on a single GPU
|
133 |
-
world_size: 1
|
134 |
-
gpu_ranks: [0]
|
135 |
-
|
136 |
-
# Batching
|
137 |
-
batch_type: "tokens"
|
138 |
-
batch_size: 13312
|
139 |
-
valid_batch_size: 13312
|
140 |
-
batch_size_multiple: 8
|
141 |
-
accum_count: [4]
|
142 |
-
accum_steps: [0]
|
143 |
-
|
144 |
-
# Optimizer & Compute
|
145 |
-
compute_dtype: "bfloat16"
|
146 |
-
optim: "pagedadamw8bit"
|
147 |
-
learning_rate: 1.0
|
148 |
-
warmup_steps: 10000
|
149 |
-
decay_method: "noam"
|
150 |
-
adam_beta2: 0.998
|
151 |
-
|
152 |
-
# Data loading
|
153 |
-
bucket_size: 262144
|
154 |
-
num_workers: 4
|
155 |
-
prefetch_factor: 100
|
156 |
-
|
157 |
-
# Hyperparams
|
158 |
-
dropout_steps: [0]
|
159 |
-
dropout: [0.1]
|
160 |
-
attention_dropout: [0.1]
|
161 |
-
max_grad_norm: 0
|
162 |
-
label_smoothing: 0.1
|
163 |
-
average_decay: 0.0001
|
164 |
-
param_init_method: xavier_uniform
|
165 |
-
normalization: "tokens"
|
166 |
-
|
167 |
-
model:
|
168 |
-
architecture: "transformer"
|
169 |
-
layer_norm: standard
|
170 |
-
share_embeddings: false
|
171 |
-
share_decoder_embeddings: true
|
172 |
-
add_ffnbias: true
|
173 |
-
mlp_activation_fn: gated-silu
|
174 |
-
add_estimator: false
|
175 |
-
add_qkvbias: false
|
176 |
-
norm_eps: 1e-6
|
177 |
-
hidden_size: 1024
|
178 |
-
encoder:
|
179 |
-
layers: 8
|
180 |
-
decoder:
|
181 |
-
layers: 2
|
182 |
-
heads: 16
|
183 |
-
transformer_ff: 4096
|
184 |
-
embeddings:
|
185 |
-
word_vec_size: 1024
|
186 |
-
position_encoding_type: "SinusoidalInterleaved"
|
187 |
-
```
|
|
|
21 |
metrics:
|
22 |
- name: BLEU
|
23 |
type: bleu
|
24 |
+
value: 29.36
|
25 |
- name: CHRF
|
26 |
type: chrf
|
27 |
+
value: 58.10
|
28 |
---
|
29 |
|
30 |
|
31 |
# `quickmt-zh-en` Neural Machine Translation Model
|
32 |
|
33 |
+
`quickmt-zh-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `zh` into `en`.
|
34 |
|
35 |
+
|
36 |
+
## Model Information
|
37 |
+
|
38 |
+
* Trained using [`eole`](https://github.com/eole-nlp/eole)
|
39 |
+
* 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
|
40 |
+
* Separate source and target Sentencepiece tokenizers
|
41 |
+
* Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
|
42 |
+
* Training data: https://huggingface.co/datasets/quickmt/quickmt-train.zh-en/tree/main
|
43 |
+
|
44 |
+
See the `eole` model configuration in this repository for further details.
|
45 |
+
|
46 |
+
|
47 |
+
## Usage with `quickmt`
|
48 |
+
|
49 |
+
First, install `quickmt` and download the model
|
50 |
|
51 |
```bash
|
52 |
git clone https://github.com/quickmt/quickmt.git
|
53 |
pip install ./quickmt/
|
|
|
54 |
|
|
|
|
|
|
|
55 |
quickmt-model-download quickmt/quickmt-zh-en ./quickmt-zh-en
|
56 |
```
|
57 |
|
|
|
|
|
|
|
|
|
58 |
```python
|
59 |
from quickmt import Translator
|
60 |
|
|
|
69 |
t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
|
70 |
```
|
71 |
|
72 |
+
The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
## Metrics
|
76 |
|
77 |
+
BLEU and CHRF2 calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("zho_Hans"->"eng_Latn"). COMET22 with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 except for `madlad400-3b-mt` which used a batch size of 1.
|
78 |
+
|
79 |
+
| Model | bleu | chrf2 | comet22 | Time (s) |
|
80 |
+
| -------------------------------- | ----- | ----- | ---- | ---- |
|
81 |
+
| quickmt/quickmt-zh-en | 29.36 | 58.10 | 0.8655 | 0.88 |
|
82 |
+
| Helsinki-NLP/opus-mt-zh-en | 23.35 | 53.60 | 0.8426 | 3.78 |
|
83 |
+
| facebook/m2m100_418M | 15.99 | 50.13 | 0.7881 | 16.61 |
|
84 |
+
| facebook/nllb-200-distilled-600M | 26.22 | 55.18 | 0.8507 | 20.89 |
|
85 |
+
| facebook/m2m100_1.2B | 20.30 | 54.23 | 0.8206 | 33.12 |
|
86 |
+
| facebook/nllb-200-distilled-1.3B | 28.56 | 57.35 | 0.8620 | 36.64 |
|
87 |
+
|
88 |
+
`quickmt-zh-en` is the fastest *and* highest quality.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eole-config.yaml
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## IO
|
2 |
+
save_data: zh_en/data_spm
|
3 |
+
overwrite: True
|
4 |
+
seed: 1234
|
5 |
+
report_every: 100
|
6 |
+
valid_metrics: ["BLEU"]
|
7 |
+
tensorboard: true
|
8 |
+
tensorboard_log_dir: tensorboard
|
9 |
+
|
10 |
+
### Vocab
|
11 |
+
src_vocab: zh-en/src.eole.vocab
|
12 |
+
tgt_vocab: zh-en/tgt.eole.vocab
|
13 |
+
src_vocab_size: 32000
|
14 |
+
tgt_vocab_size: 32000
|
15 |
+
vocab_size_multiple: 8
|
16 |
+
share_vocab: False
|
17 |
+
n_sample: 0
|
18 |
+
|
19 |
+
data:
|
20 |
+
corpus_1:
|
21 |
+
path_src: hf://quickmt/quickmt-train-zh-en/zh
|
22 |
+
path_tgt: hf://quickmt/quickmt-train-zh-en/en
|
23 |
+
path_sco: hf://quickmt/quickmt-train-zh-en/sco
|
24 |
+
valid:
|
25 |
+
path_src: zh-en/dev.zho
|
26 |
+
path_tgt: zh-en/dev.eng
|
27 |
+
|
28 |
+
transforms: [sentencepiece, filtertoolong]
|
29 |
+
transforms_configs:
|
30 |
+
sentencepiece:
|
31 |
+
src_subword_model: "zh-en/src.spm.model"
|
32 |
+
tgt_subword_model: "zh-en/tgt.spm.model"
|
33 |
+
filtertoolong:
|
34 |
+
src_seq_length: 256
|
35 |
+
tgt_seq_length: 256
|
36 |
+
|
37 |
+
training:
|
38 |
+
# Run configuration
|
39 |
+
model_path: zh-en/model
|
40 |
+
keep_checkpoint: 4
|
41 |
+
save_checkpoint_steps: 2000
|
42 |
+
train_steps: 100000
|
43 |
+
valid_steps: 2000
|
44 |
+
|
45 |
+
# Train on a single GPU
|
46 |
+
world_size: 1
|
47 |
+
gpu_ranks: [0]
|
48 |
+
|
49 |
+
# Batching
|
50 |
+
batch_type: "tokens"
|
51 |
+
batch_size: 8192
|
52 |
+
valid_batch_size: 8192
|
53 |
+
batch_size_multiple: 8
|
54 |
+
accum_count: [16]
|
55 |
+
accum_steps: [0]
|
56 |
+
|
57 |
+
# Optimizer & Compute
|
58 |
+
compute_dtype: "bf16"
|
59 |
+
optim: "pagedadamw8bit"
|
60 |
+
learning_rate: 2.0
|
61 |
+
warmup_steps: 10000
|
62 |
+
decay_method: "noam"
|
63 |
+
adam_beta2: 0.998
|
64 |
+
|
65 |
+
# Data loading
|
66 |
+
bucket_size: 128000
|
67 |
+
num_workers: 4
|
68 |
+
prefetch_factor: 100
|
69 |
+
|
70 |
+
# Hyperparams
|
71 |
+
dropout_steps: [0]
|
72 |
+
dropout: [0.1]
|
73 |
+
attention_dropout: [0.1]
|
74 |
+
max_grad_norm: 2
|
75 |
+
label_smoothing: 0.1
|
76 |
+
average_decay: 0.0001
|
77 |
+
param_init_method: xavier_uniform
|
78 |
+
normalization: "tokens"
|
79 |
+
|
80 |
+
model:
|
81 |
+
architecture: "transformer"
|
82 |
+
layer_norm: standard
|
83 |
+
share_embeddings: false
|
84 |
+
share_decoder_embeddings: true
|
85 |
+
add_ffnbias: true
|
86 |
+
mlp_activation_fn: gelu
|
87 |
+
add_estimator: false
|
88 |
+
add_qkvbias: false
|
89 |
+
norm_eps: 1e-6
|
90 |
+
hidden_size: 1024
|
91 |
+
encoder:
|
92 |
+
layers: 8
|
93 |
+
decoder:
|
94 |
+
layers: 2
|
95 |
+
heads: 16
|
96 |
+
transformer_ff: 4096
|
97 |
+
embeddings:
|
98 |
+
word_vec_size: 1024
|
99 |
+
position_encoding_type: "SinusoidalInterleaved"
|
eole_model/config.json
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"save_data": "zh_en/data_spm",
|
3 |
+
"src_vocab": "zh-en-benchmark/src.eole.vocab",
|
4 |
+
"report_every": 100,
|
5 |
+
"share_vocab": false,
|
6 |
+
"tgt_vocab": "zh-en-benchmark/tgt.eole.vocab",
|
7 |
+
"vocab_size_multiple": 8,
|
8 |
+
"tensorboard_log_dir_dated": "tensorboard/Feb-12_13-34-26",
|
9 |
+
"src_vocab_size": 32000,
|
10 |
+
"tensorboard": true,
|
11 |
+
"n_sample": 0,
|
12 |
+
"tgt_vocab_size": 32000,
|
13 |
+
"valid_metrics": [
|
14 |
+
"BLEU"
|
15 |
+
],
|
16 |
+
"tensorboard_log_dir": "tensorboard",
|
17 |
+
"seed": 1234,
|
18 |
+
"overwrite": true,
|
19 |
+
"transforms": [
|
20 |
+
"sentencepiece",
|
21 |
+
"filtertoolong"
|
22 |
+
],
|
23 |
+
"training": {
|
24 |
+
"accum_count": [
|
25 |
+
16
|
26 |
+
],
|
27 |
+
"train_steps": 100000,
|
28 |
+
"gpu_ranks": [
|
29 |
+
0
|
30 |
+
],
|
31 |
+
"save_checkpoint_steps": 2000,
|
32 |
+
"decay_method": "noam",
|
33 |
+
"bucket_size": 128000,
|
34 |
+
"world_size": 1,
|
35 |
+
"accum_steps": [
|
36 |
+
0
|
37 |
+
],
|
38 |
+
"optim": "pagedadamw8bit",
|
39 |
+
"prefetch_factor": 100,
|
40 |
+
"compute_dtype": "torch.bfloat16",
|
41 |
+
"normalization": "tokens",
|
42 |
+
"label_smoothing": 0.1,
|
43 |
+
"batch_size_multiple": 8,
|
44 |
+
"dropout_steps": [
|
45 |
+
0
|
46 |
+
],
|
47 |
+
"average_decay": 0.0001,
|
48 |
+
"dropout": [
|
49 |
+
0.1
|
50 |
+
],
|
51 |
+
"batch_type": "tokens",
|
52 |
+
"valid_batch_size": 8192,
|
53 |
+
"param_init_method": "xavier_uniform",
|
54 |
+
"adam_beta2": 0.998,
|
55 |
+
"model_path": "zh-en-benchmark/model",
|
56 |
+
"keep_checkpoint": 4,
|
57 |
+
"num_workers": 0,
|
58 |
+
"batch_size": 8192,
|
59 |
+
"attention_dropout": [
|
60 |
+
0.1
|
61 |
+
],
|
62 |
+
"warmup_steps": 10000,
|
63 |
+
"valid_steps": 2000,
|
64 |
+
"max_grad_norm": 2.0,
|
65 |
+
"learning_rate": 2.0
|
66 |
+
},
|
67 |
+
"data": {
|
68 |
+
"corpus_1": {
|
69 |
+
"path_align": null,
|
70 |
+
"path_src": "zh-en/train.ready.zh",
|
71 |
+
"path_tgt": "zh-en/train.ready.en",
|
72 |
+
"transforms": [
|
73 |
+
"sentencepiece",
|
74 |
+
"filtertoolong"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
"valid": {
|
78 |
+
"path_align": null,
|
79 |
+
"path_src": "zh-en-benchmark/dev.zho",
|
80 |
+
"path_tgt": "zh-en-benchmark/dev.eng",
|
81 |
+
"transforms": [
|
82 |
+
"sentencepiece",
|
83 |
+
"filtertoolong"
|
84 |
+
]
|
85 |
+
}
|
86 |
+
},
|
87 |
+
"transforms_configs": {
|
88 |
+
"sentencepiece": {
|
89 |
+
"tgt_subword_model": "${MODEL_PATH}/tgt.spm.model",
|
90 |
+
"src_subword_model": "${MODEL_PATH}/src.spm.model"
|
91 |
+
},
|
92 |
+
"filtertoolong": {
|
93 |
+
"tgt_seq_length": 256,
|
94 |
+
"src_seq_length": 256
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"model": {
|
98 |
+
"share_decoder_embeddings": true,
|
99 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
100 |
+
"add_qkvbias": false,
|
101 |
+
"architecture": "transformer",
|
102 |
+
"add_ffnbias": true,
|
103 |
+
"hidden_size": 1024,
|
104 |
+
"transformer_ff": 4096,
|
105 |
+
"mlp_activation_fn": "gelu",
|
106 |
+
"norm_eps": 1e-06,
|
107 |
+
"layer_norm": "standard",
|
108 |
+
"heads": 16,
|
109 |
+
"add_estimator": false,
|
110 |
+
"share_embeddings": false,
|
111 |
+
"decoder": {
|
112 |
+
"heads": 16,
|
113 |
+
"decoder_type": "transformer",
|
114 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
115 |
+
"add_qkvbias": false,
|
116 |
+
"layers": 2,
|
117 |
+
"add_ffnbias": true,
|
118 |
+
"hidden_size": 1024,
|
119 |
+
"n_positions": null,
|
120 |
+
"transformer_ff": 4096,
|
121 |
+
"rope_config": null,
|
122 |
+
"mlp_activation_fn": "gelu",
|
123 |
+
"norm_eps": 1e-06,
|
124 |
+
"layer_norm": "standard",
|
125 |
+
"tgt_word_vec_size": 1024
|
126 |
+
},
|
127 |
+
"embeddings": {
|
128 |
+
"word_vec_size": 1024,
|
129 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
130 |
+
"tgt_word_vec_size": 1024,
|
131 |
+
"src_word_vec_size": 1024
|
132 |
+
},
|
133 |
+
"encoder": {
|
134 |
+
"heads": 16,
|
135 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
136 |
+
"add_qkvbias": false,
|
137 |
+
"layers": 8,
|
138 |
+
"add_ffnbias": true,
|
139 |
+
"hidden_size": 1024,
|
140 |
+
"n_positions": null,
|
141 |
+
"src_word_vec_size": 1024,
|
142 |
+
"transformer_ff": 4096,
|
143 |
+
"rope_config": null,
|
144 |
+
"mlp_activation_fn": "gelu",
|
145 |
+
"norm_eps": 1e-06,
|
146 |
+
"layer_norm": "standard",
|
147 |
+
"encoder_type": "transformer"
|
148 |
+
}
|
149 |
+
}
|
150 |
+
}
|
eole_model/model.00.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6b78dad9fa4e560ce0abe0fc7c2b317ebe560fc23aa1897419253a1b334872d
|
3 |
+
size 820042008
|
eole_model/src.spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23d03d562fc3f8fe57e497dac0ece4827c254675a80c103fc4bb4040638ceb67
|
3 |
+
size 733978
|
eole_model/tgt.spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c373f1d78753313b0dbc337058bf8450e1fdd6fe662a49e0941affce44ec14c5
|
3 |
+
size 800955
|
eole_model/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:494518d6282fcd01f850ab4ab096e6a5c937aa834290a62e5efd435275828c9d
|
3 |
+
size 409972810
|
source_vocabulary.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
src.spm.model
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23d03d562fc3f8fe57e497dac0ece4827c254675a80c103fc4bb4040638ceb67
|
3 |
+
size 733978
|
target_vocabulary.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tgt.spm.model
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c373f1d78753313b0dbc337058bf8450e1fdd6fe662a49e0941affce44ec14c5
|
3 |
+
size 800955
|