File size: 12,909 Bytes
c70cbf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
{
"architectures": [
"Qwen3MoeForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 151643,
"decoder_sparse_step": 1,
"eos_token_id": 151645,
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 12288,
"max_position_embeddings": 40960,
"max_window_layers": 94,
"mlp_only_layers": [],
"model_type": "qwen3_moe",
"moe_intermediate_size": 1536,
"norm_topk_prob": true,
"num_attention_heads": 64,
"num_experts": 128,
"num_experts_per_tok": 8,
"num_hidden_layers": 94,
"num_key_value_heads": 4,
"output_router_logits": false,
"rms_norm_eps": 1e-06,
"rope_scaling": null,
"rope_theta": 1000000.0,
"router_aux_loss_coef": 0.001,
"sliding_window": null,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.51.0",
"use_cache": true,
"use_sliding_window": false,
"vocab_size": 151936,
"quantization_config": {
"activation_scheme": "dynamic",
"modules_to_not_convert": [
"lm_head",
"model.layers.0.input_layernorm",
"model.layers.0.mlp.gate",
"model.layers.0.post_attention_layernorm",
"model.layers.1.input_layernorm",
"model.layers.1.mlp.gate",
"model.layers.1.post_attention_layernorm",
"model.layers.2.input_layernorm",
"model.layers.2.mlp.gate",
"model.layers.2.post_attention_layernorm",
"model.layers.3.input_layernorm",
"model.layers.3.mlp.gate",
"model.layers.3.post_attention_layernorm",
"model.layers.4.input_layernorm",
"model.layers.4.mlp.gate",
"model.layers.4.post_attention_layernorm",
"model.layers.5.input_layernorm",
"model.layers.5.mlp.gate",
"model.layers.5.post_attention_layernorm",
"model.layers.6.input_layernorm",
"model.layers.6.mlp.gate",
"model.layers.6.post_attention_layernorm",
"model.layers.7.input_layernorm",
"model.layers.7.mlp.gate",
"model.layers.7.post_attention_layernorm",
"model.layers.8.input_layernorm",
"model.layers.8.mlp.gate",
"model.layers.8.post_attention_layernorm",
"model.layers.9.input_layernorm",
"model.layers.9.mlp.gate",
"model.layers.9.post_attention_layernorm",
"model.layers.10.input_layernorm",
"model.layers.10.mlp.gate",
"model.layers.10.post_attention_layernorm",
"model.layers.11.input_layernorm",
"model.layers.11.mlp.gate",
"model.layers.11.post_attention_layernorm",
"model.layers.12.input_layernorm",
"model.layers.12.mlp.gate",
"model.layers.12.post_attention_layernorm",
"model.layers.13.input_layernorm",
"model.layers.13.mlp.gate",
"model.layers.13.post_attention_layernorm",
"model.layers.14.input_layernorm",
"model.layers.14.mlp.gate",
"model.layers.14.post_attention_layernorm",
"model.layers.15.input_layernorm",
"model.layers.15.mlp.gate",
"model.layers.15.post_attention_layernorm",
"model.layers.16.input_layernorm",
"model.layers.16.mlp.gate",
"model.layers.16.post_attention_layernorm",
"model.layers.17.input_layernorm",
"model.layers.17.mlp.gate",
"model.layers.17.post_attention_layernorm",
"model.layers.18.input_layernorm",
"model.layers.18.mlp.gate",
"model.layers.18.post_attention_layernorm",
"model.layers.19.input_layernorm",
"model.layers.19.mlp.gate",
"model.layers.19.post_attention_layernorm",
"model.layers.20.input_layernorm",
"model.layers.20.mlp.gate",
"model.layers.20.post_attention_layernorm",
"model.layers.21.input_layernorm",
"model.layers.21.mlp.gate",
"model.layers.21.post_attention_layernorm",
"model.layers.22.input_layernorm",
"model.layers.22.mlp.gate",
"model.layers.22.post_attention_layernorm",
"model.layers.23.input_layernorm",
"model.layers.23.mlp.gate",
"model.layers.23.post_attention_layernorm",
"model.layers.24.input_layernorm",
"model.layers.24.mlp.gate",
"model.layers.24.post_attention_layernorm",
"model.layers.25.input_layernorm",
"model.layers.25.mlp.gate",
"model.layers.25.post_attention_layernorm",
"model.layers.26.input_layernorm",
"model.layers.26.mlp.gate",
"model.layers.26.post_attention_layernorm",
"model.layers.27.input_layernorm",
"model.layers.27.mlp.gate",
"model.layers.27.post_attention_layernorm",
"model.layers.28.input_layernorm",
"model.layers.28.mlp.gate",
"model.layers.28.post_attention_layernorm",
"model.layers.29.input_layernorm",
"model.layers.29.mlp.gate",
"model.layers.29.post_attention_layernorm",
"model.layers.30.input_layernorm",
"model.layers.30.mlp.gate",
"model.layers.30.post_attention_layernorm",
"model.layers.31.input_layernorm",
"model.layers.31.mlp.gate",
"model.layers.31.post_attention_layernorm",
"model.layers.32.input_layernorm",
"model.layers.32.mlp.gate",
"model.layers.32.post_attention_layernorm",
"model.layers.33.input_layernorm",
"model.layers.33.mlp.gate",
"model.layers.33.post_attention_layernorm",
"model.layers.34.input_layernorm",
"model.layers.34.mlp.gate",
"model.layers.34.post_attention_layernorm",
"model.layers.35.input_layernorm",
"model.layers.35.mlp.gate",
"model.layers.35.post_attention_layernorm",
"model.layers.36.input_layernorm",
"model.layers.36.mlp.gate",
"model.layers.36.post_attention_layernorm",
"model.layers.37.input_layernorm",
"model.layers.37.mlp.gate",
"model.layers.37.post_attention_layernorm",
"model.layers.38.input_layernorm",
"model.layers.38.mlp.gate",
"model.layers.38.post_attention_layernorm",
"model.layers.39.input_layernorm",
"model.layers.39.mlp.gate",
"model.layers.39.post_attention_layernorm",
"model.layers.40.input_layernorm",
"model.layers.40.mlp.gate",
"model.layers.40.post_attention_layernorm",
"model.layers.41.input_layernorm",
"model.layers.41.mlp.gate",
"model.layers.41.post_attention_layernorm",
"model.layers.42.input_layernorm",
"model.layers.42.mlp.gate",
"model.layers.42.post_attention_layernorm",
"model.layers.43.input_layernorm",
"model.layers.43.mlp.gate",
"model.layers.43.post_attention_layernorm",
"model.layers.44.input_layernorm",
"model.layers.44.mlp.gate",
"model.layers.44.post_attention_layernorm",
"model.layers.45.input_layernorm",
"model.layers.45.mlp.gate",
"model.layers.45.post_attention_layernorm",
"model.layers.46.input_layernorm",
"model.layers.46.mlp.gate",
"model.layers.46.post_attention_layernorm",
"model.layers.47.input_layernorm",
"model.layers.47.mlp.gate",
"model.layers.47.post_attention_layernorm",
"model.layers.48.input_layernorm",
"model.layers.48.mlp.gate",
"model.layers.48.post_attention_layernorm",
"model.layers.49.input_layernorm",
"model.layers.49.mlp.gate",
"model.layers.49.post_attention_layernorm",
"model.layers.50.input_layernorm",
"model.layers.50.mlp.gate",
"model.layers.50.post_attention_layernorm",
"model.layers.51.input_layernorm",
"model.layers.51.mlp.gate",
"model.layers.51.post_attention_layernorm",
"model.layers.52.input_layernorm",
"model.layers.52.mlp.gate",
"model.layers.52.post_attention_layernorm",
"model.layers.53.input_layernorm",
"model.layers.53.mlp.gate",
"model.layers.53.post_attention_layernorm",
"model.layers.54.input_layernorm",
"model.layers.54.mlp.gate",
"model.layers.54.post_attention_layernorm",
"model.layers.55.input_layernorm",
"model.layers.55.mlp.gate",
"model.layers.55.post_attention_layernorm",
"model.layers.56.input_layernorm",
"model.layers.56.mlp.gate",
"model.layers.56.post_attention_layernorm",
"model.layers.57.input_layernorm",
"model.layers.57.mlp.gate",
"model.layers.57.post_attention_layernorm",
"model.layers.58.input_layernorm",
"model.layers.58.mlp.gate",
"model.layers.58.post_attention_layernorm",
"model.layers.59.input_layernorm",
"model.layers.59.mlp.gate",
"model.layers.59.post_attention_layernorm",
"model.layers.60.input_layernorm",
"model.layers.60.mlp.gate",
"model.layers.60.post_attention_layernorm",
"model.layers.61.input_layernorm",
"model.layers.61.mlp.gate",
"model.layers.61.post_attention_layernorm",
"model.layers.62.input_layernorm",
"model.layers.62.mlp.gate",
"model.layers.62.post_attention_layernorm",
"model.layers.63.input_layernorm",
"model.layers.63.mlp.gate",
"model.layers.63.post_attention_layernorm",
"model.layers.64.input_layernorm",
"model.layers.64.mlp.gate",
"model.layers.64.post_attention_layernorm",
"model.layers.65.input_layernorm",
"model.layers.65.mlp.gate",
"model.layers.65.post_attention_layernorm",
"model.layers.66.input_layernorm",
"model.layers.66.mlp.gate",
"model.layers.66.post_attention_layernorm",
"model.layers.67.input_layernorm",
"model.layers.67.mlp.gate",
"model.layers.67.post_attention_layernorm",
"model.layers.68.input_layernorm",
"model.layers.68.mlp.gate",
"model.layers.68.post_attention_layernorm",
"model.layers.69.input_layernorm",
"model.layers.69.mlp.gate",
"model.layers.69.post_attention_layernorm",
"model.layers.70.input_layernorm",
"model.layers.70.mlp.gate",
"model.layers.70.post_attention_layernorm",
"model.layers.71.input_layernorm",
"model.layers.71.mlp.gate",
"model.layers.71.post_attention_layernorm",
"model.layers.72.input_layernorm",
"model.layers.72.mlp.gate",
"model.layers.72.post_attention_layernorm",
"model.layers.73.input_layernorm",
"model.layers.73.mlp.gate",
"model.layers.73.post_attention_layernorm",
"model.layers.74.input_layernorm",
"model.layers.74.mlp.gate",
"model.layers.74.post_attention_layernorm",
"model.layers.75.input_layernorm",
"model.layers.75.mlp.gate",
"model.layers.75.post_attention_layernorm",
"model.layers.76.input_layernorm",
"model.layers.76.mlp.gate",
"model.layers.76.post_attention_layernorm",
"model.layers.77.input_layernorm",
"model.layers.77.mlp.gate",
"model.layers.77.post_attention_layernorm",
"model.layers.78.input_layernorm",
"model.layers.78.mlp.gate",
"model.layers.78.post_attention_layernorm",
"model.layers.79.input_layernorm",
"model.layers.79.mlp.gate",
"model.layers.79.post_attention_layernorm",
"model.layers.80.input_layernorm",
"model.layers.80.mlp.gate",
"model.layers.80.post_attention_layernorm",
"model.layers.81.input_layernorm",
"model.layers.81.mlp.gate",
"model.layers.81.post_attention_layernorm",
"model.layers.82.input_layernorm",
"model.layers.82.mlp.gate",
"model.layers.82.post_attention_layernorm",
"model.layers.83.input_layernorm",
"model.layers.83.mlp.gate",
"model.layers.83.post_attention_layernorm",
"model.layers.84.input_layernorm",
"model.layers.84.mlp.gate",
"model.layers.84.post_attention_layernorm",
"model.layers.85.input_layernorm",
"model.layers.85.mlp.gate",
"model.layers.85.post_attention_layernorm",
"model.layers.86.input_layernorm",
"model.layers.86.mlp.gate",
"model.layers.86.post_attention_layernorm",
"model.layers.87.input_layernorm",
"model.layers.87.mlp.gate",
"model.layers.87.post_attention_layernorm",
"model.layers.88.input_layernorm",
"model.layers.88.mlp.gate",
"model.layers.88.post_attention_layernorm",
"model.layers.89.input_layernorm",
"model.layers.89.mlp.gate",
"model.layers.89.post_attention_layernorm",
"model.layers.90.input_layernorm",
"model.layers.90.mlp.gate",
"model.layers.90.post_attention_layernorm",
"model.layers.91.input_layernorm",
"model.layers.91.mlp.gate",
"model.layers.91.post_attention_layernorm",
"model.layers.92.input_layernorm",
"model.layers.92.mlp.gate",
"model.layers.92.post_attention_layernorm",
"model.layers.93.input_layernorm",
"model.layers.93.mlp.gate",
"model.layers.93.post_attention_layernorm"
],
"fmt": "e4m3",
"quant_method": "fp8",
"weight_block_size": [
128,
128
]
}
} |