pkedzia commited on
Commit
e420491
·
1 Parent(s): ee119f2

Update README.md

Browse files

Fixed model path in the example.

Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -31,7 +31,7 @@ Then you can use the model like this:
31
  from sentence_transformers import SentenceTransformer
32
  sentences = ["Ala ma kota", "Ala ma psa"]
33
 
34
- model = SentenceTransformer('polish-roberta-large-v2-sts')
35
  embeddings = model.encode(sentences)
36
  print(embeddings)
37
  ```
@@ -57,8 +57,8 @@ def mean_pooling(model_output, attention_mask):
57
  sentences = ['Ala ma kota', 'Ala ma psa']
58
 
59
  # Load model from HuggingFace Hub
60
- tokenizer = AutoTokenizer.from_pretrained('polish-roberta-large-v2-sts')
61
- model = AutoModel.from_pretrained('polish-roberta-large-v2-sts')
62
 
63
  # Tokenize sentences
64
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
31
  from sentence_transformers import SentenceTransformer
32
  sentences = ["Ala ma kota", "Ala ma psa"]
33
 
34
+ model = SentenceTransformer('radlab/polish-roberta-large-v2-sts')
35
  embeddings = model.encode(sentences)
36
  print(embeddings)
37
  ```
 
57
  sentences = ['Ala ma kota', 'Ala ma psa']
58
 
59
  # Load model from HuggingFace Hub
60
+ tokenizer = AutoTokenizer.from_pretrained('radlab/polish-roberta-large-v2-sts')
61
+ model = AutoModel.from_pretrained('radlab/polish-roberta-large-v2-sts')
62
 
63
  # Tokenize sentences
64
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')