--- license: apache-2.0 datasets: - dair-ai/emotion metrics: - accuracy base_model: - microsoft/deberta-v3-base pipeline_tag: text-classification library_name: transformers --- # DeBERTa v3 Emotion Classifier ## Model description This repository contains a DeBERTa v3 base model fine-tuned for emotion classification on the `dair-ai/emotion` dataset. The model is intended for short-text emotion labeling and was finetuned with standard Trainer-based training on Google Colab / Drive. ## Use cases - Classifying short texts into emotion categories for downstream workflows (analytics, moderation, UX signals). - Human-in-the-loop pipelines where low-confidence outputs trigger clarification. ## Dataset - `dair-ai/emotion` (public dataset for emotion labeling). ## Training summary - Base model: `microsoft/deberta-v3-base` - Fine-tuning method: full fine-tuning (Trainer) - Number of labels: 6 - Training environment: Google Colab ## intended use This model is intended to support emotion classification tasks. It may produce incorrect or biased outputs when used on out-of-distribution text, long-form inputs, or languages it was not trained on. Use a confidence-based fallback for important decisions and include human review for high-stakes applications. ## How to load ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch repo_id = ragunath-ravi/deberta-v3-emotion-classifier tokenizer = AutoTokenizer.from_pretrained(repo_id) model = AutoModelForSequenceClassification.from_pretrained(repo_id) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) model.eval() ``` ## Example inference ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import torch.nn.functional as F tokenizer = AutoTokenizer.from_pretrained(ragunath-ravi/deberta-v3-emotion-classifier) model = AutoModelForSequenceClassification.from_pretrained(ragunath-ravi/deberta-v3-emotion-classifier) inputs = tokenizer("I am so happy today!", return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): logits = model(**inputs).logits probs = F.softmax(logits, dim=-1).cpu().numpy()[0] print(probs) ``` ## Acknowledgements - This model is based on Microsoft DeBERTa v3 base. - Dataset: `dair-ai/emotion`. - Transformers library: Hugging Face `transformers`. ## Model demo : [demo](https://huggingface.co/spaces/ragunath-ravi/deberta-emotion-classifier)