Rahul213 commited on
Commit
c01ef47
·
verified ·
1 Parent(s): 44b7e9d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 250.14 +/- 23.21
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e12bf45ff40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e12bf464040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e12bf4640d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e12bf464160>", "_build": "<function ActorCriticPolicy._build at 0x7e12bf4641f0>", "forward": "<function ActorCriticPolicy.forward at 0x7e12bf464280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e12bf464310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e12bf4643a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e12bf464430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e12bf4644c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e12bf464550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e12bf4645e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e12bf3f93c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714974025300853875, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM13aD3teCc+nx4oPPQDVL4g7AW84mw4vQAAAAAAAAAA5vTZPeFYj7qDvH82ngR8MUdjTrrZRJS1AAAAAAAAgD+AyDI9KYhbunNAULOlunSvHBS+Oud+xTMAAIA/AACAP01gSr5ZNw0/3dS5PWymkb7ieUi9VUCMvQAAAAAAAAAAVvaAvnbpLD/m37M9rhiIvp7fgr1Sbno+AAAAAAAAAAAtvwC+5BNdP1UpY72vzpm+jQL5vMgD8zwAAAAAAAAAAA3UCb5pcCw/sBLSvBTrmr4pBPu9zlRsvQAAAAAAAAAAGlCYvcNVKLoeyOS6SWl4to34nDuZNgU6AAAAAAAAgD8ml3E+YSyeP5AGuz6UeFm+oY3EPm3XtT0AAAAAAAAAAOZ+k72F0+C5yFUAt6TJyrFMBCc6UFAWNgAAgD8AAIA/hgQEvj0Lc7uyhOW6QHwNuZX+ljx2ZvA5AACAPwAAgD96epg+RCqAPzpskj2JHom+5DhYPtpWsbwAAAAAAAAAAEAtiT0paAa6oYrDu9k4BjhXqTy7guQNtwAAgD8AAIA/AJfjPORZNz6ayfG94z2Evr/nMb3m8hm9AAAAAAAAAADayQY+DOcWP0qbIb5gKaC+d2uwPH3O+r0AAAAAAAAAAAAI+7wfLfq5I4h9us8+JbWff5a5dDaVOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRS/Ot4iX+MAWyUTegDjAF0lEdAl2wk1ZTya3V9lChoBkdAccJTOgQHzGgHTSABaAhHQJdtB3IMjNZ1fZQoaAZHQHAIoZydWhhoB01KAmgIR0CXdhs5GSZCdX2UKGgGR0BwH0blzU7TaAdNCgJoCEdAl3b/2PDHfnV9lChoBkdAZvqBBiTdL2gHTegDaAhHQJd4YZeiSJV1fZQoaAZHQGcMOhK15SpoB03oA2gIR0CXfPMHKOktdX2UKGgGR0BnPL8xbjcVaAdN6ANoCEdAl4AY24uscXV9lChoBkdAZFCrupjtomgHTegDaAhHQJeCXCO3lS11fZQoaAZHQG3XD9n9NvhoB01yAmgIR0CXh5PH1e0HdX2UKGgGR0BwqTM/yGzsaAdNsAJoCEdAl4zDhky1u3V9lChoBkdAOHQ1BMSK32gHS9VoCEdAl4662SdOI3V9lChoBkdAZMNiFTNt7GgHTegDaAhHQJeQZk/bCaZ1fZQoaAZHQGdmxg7YChhoB03oA2gIR0CXpOq0MPSVdX2UKGgGR0BhRqcPOIIoaAdN6ANoCEdAl6dJuMuOCHV9lChoBkdAZaN7fHggo2gHTegDaAhHQJeoQYaYNRZ1fZQoaAZHQGLF8lXzUZxoB03oA2gIR0CXqLtEXtSidX2UKGgGR0Bkeq9RJmNBaAdN6ANoCEdAl6mO+IuXeHV9lChoBkdAMUIO2AoXsWgHTQABaAhHQJeq4jRlYlp1fZQoaAZHQG/z4KhL5ARoB01gAmgIR0CXrYJvYODrdX2UKGgGR0BFFN+CsfaIaAdNEQFoCEdAl63vJ3gUDnV9lChoBkdAZUFRUFSsKmgHTegDaAhHQJevwn8baRJ1fZQoaAZHQDNd24d6syVoB0vgaAhHQJewrrnkkrx1fZQoaAZHQGVmk7W/ag5oB03oA2gIR0CXsLo371qWdX2UKGgGR0BwaBpi7TUiaAdNQgFoCEdAl7Y6R2bG3nV9lChoBkdAaDKDAaef7WgHTegDaAhHQJe5qL1mJ3x1fZQoaAZHQG172aMJhORoB013AWgIR0CXucDziCJ5dX2UKGgGR0BlUz1RLsa9aAdN6ANoCEdAl7rZ2dNFjXV9lChoBkdAY80Fi8WbgGgHTegDaAhHQJe8loDgZTB1fZQoaAZHQGWeo5YHPeJoB03oA2gIR0CXximF8G9pdX2UKGgGR0BtWmTA31jBaAdNDQJoCEdAl8249cKPXHV9lChoBkdAYVH0Fr2xp2gHTegDaAhHQJfPD3xnWat1fZQoaAZHQG0CDHXEqDtoB01KAWgIR0CXz3CxeLNwdX2UKGgGR0BwEdkUbkwOaAdN5wJoCEdAl9HIMWoFV3V9lChoBkdAcEN9QGfPHGgHTT8CaAhHQJfR5tzjm0V1fZQoaAZHQGLvQ1rIo3JoB03oA2gIR0CX1TMN+b3HdX2UKGgGR0BxRIhIOH32aAdN1gJoCEdAl9ZZhF3IMnV9lChoBkdAbw/sfq5byGgHTUUCaAhHQJfYUm8dxQ11fZQoaAZHQGUlCs4ku6FoB03oA2gIR0CX2Uo2n88+dX2UKGgGR0Bw73xYq5LAaAdNRAJoCEdAl+2/HktEonV9lChoBkdAaI6XqqwQlWgHTegDaAhHQJfz64TbnHN1fZQoaAZHQGyjcbaRISVoB01AAWgIR0CX9aCJGe+VdX2UKGgGR0BfMQyEcsDoaAdN6ANoCEdAl/dB9srNGHV9lChoBkdAYvCjkdV/+mgHTegDaAhHQJf7ZGpda+x1fZQoaAZHQG8KhJ7LMcJoB00rAmgIR0CX/qLLIPsidX2UKGgGR0BQEmbgCOm0aAdL4mgIR0CYAjoexOcldX2UKGgGR0BvKeJcgQpXaAdNawFoCEdAmAKtYjjaPHV9lChoBkdAbiEbjtG/e2gHTQICaAhHQJgD6OT7l7t1fZQoaAZHQGKUqoQ4CIVoB03oA2gIR0CYBa9s7+1jdX2UKGgGR0BkF6ekHlfaaAdN6ANoCEdAmAfSlnAZbnV9lChoBkdANngNCqp97WgHS9toCEdAmA1+vdM0xnV9lChoBkdAZuO7ZnL7oGgHTegDaAhHQJgPlSiudPN1fZQoaAZHQHAqX1anrIJoB01gA2gIR0CYEHI+4b0fdX2UKGgGR0BwPGUr08NhaAdN5AFoCEdAmBEhQemvXHV9lChoBkdAcG1uG9HtnmgHTSUCaAhHQJgROzF+/g11fZQoaAZHQHCuqHbh3q1oB000AWgIR0CYElXHzYmLdX2UKGgGR0Bi7kdHUc4paAdN6ANoCEdAmBametjkMnV9lChoBkdAY+3SMtK7I2gHTegDaAhHQJgZD4/NZ/11fZQoaAZHQG4eftx+8XhoB01iAWgIR0CYGWWdVea8dX2UKGgGR0BxcWoP07KaaAdNwgFoCEdAmBowZ0jkdXV9lChoBkdASbWKyfL9uWgHS89oCEdAmBpJBomG/XV9lChoBkdAbrm065oXbmgHTWECaAhHQJgamd07r9l1fZQoaAZHQGSLEkKNQ0poB03oA2gIR0CYHTJE6T4ddX2UKGgGR0BhRwI0IkZ8aAdN6ANoCEdAmB99cry1/nV9lChoBkdAZBpdJrcj7mgHTegDaAhHQJgglfD1oQF1fZQoaAZHQHFS17dBSk1oB02nAmgIR0CYIWbXYlIFdX2UKGgGR0BxB8bFS88LaAdNagFoCEdAmDU4Lw4KhXV9lChoBkdAcCTR1oxpL2gHTbUBaAhHQJg1U3n6l+F1fZQoaAZHQGwrXsPatcRoB03EAWgIR0CYN4mWMS9NdX2UKGgGR0Bt2xXbM5fdaAdNmgFoCEdAmDgmI42jwnV9lChoBkdAbfdTH80k4WgHTf0CaAhHQJg8/79AHFB1fZQoaAZHQHDHetGNJe5oB010AWgIR0CYPiq+8Gs4dX2UKGgGR0BwCOBjFyaNaAdNvgFoCEdAmEE/VEuxr3V9lChoBkdASTYBT4tYjmgHTQgBaAhHQJhBwU0vXbx1fZQoaAZHQG8lG9Htnf5oB00yAWgIR0CYQiKpDNQkdX2UKGgGR0Bx0lxCIDYAaAdNkAFoCEdAmEMEroW56XV9lChoBkdAb6wO+7Dl5mgHTV8BaAhHQJhDrFHavid1fZQoaAZHQHD0JlOGj9JoB033AWgIR0CYQ92VE/jbdX2UKGgGR0BsNk9Oh0yQaAdN8AFoCEdAmESs3hn8K3V9lChoBkdAcWrl+mWMTGgHTVwBaAhHQJhFqEWZZ0V1fZQoaAZHQHFiB+nZTQ5oB00WAmgIR0CYRnO0LMLXdX2UKGgGR0Bsghxeb/fgaAdNbQJoCEdAmEaG3KB/Z3V9lChoBkdAcRssguAZsWgHTXEBaAhHQJhITdGiHqN1fZQoaAZHQHDuFIy0rsloB00eA2gIR0CYSI7eVLSNdX2UKGgGR0ByDL8Nx2jgaAdNoQFoCEdAmEqGUW2w3nV9lChoBkdAcYCLjxTbWWgHTTEBaAhHQJhRKL5ylvZ1fZQoaAZHQHCf9VvMr3FoB02nAmgIR0CYUU0mdAgQdX2UKGgGR0BtVM6YE4ecaAdNjAFoCEdAmFT0mICU5nV9lChoBkdAcgx74i5d4WgHTS8BaAhHQJhV0xVQyh11fZQoaAZHQHBByNOuaF5oB02RAWgIR0CYVnah6By0dX2UKGgGR0BxChefI0ZWaAdNhgFoCEdAmFbLvXsgMnV9lChoBkdAcfSloUSIxmgHTQcCaAhHQJhX34xk/bF1fZQoaAZHQHECLLMcIZ9oB01iAmgIR0CYWzHnEETydX2UKGgGR0Bt2JNfw7T2aAdNagFoCEdAmFuUTtb9qHV9lChoBkdAcYRiZfD1oWgHTfoBaAhHQJhedi5NGmV1fZQoaAZHQHBr1ejVQRBoB01fAmgIR0CYX3irksBidX2UKGgGR0Bw0yCUX531aAdN3wFoCEdAmGCuwX668XV9lChoBkdAcJ7qxC6YmmgHTaQCaAhHQJhh8pYs/Y91fZQoaAZHQHBmdYGMXJpoB01fAmgIR0CYYgCfHxSYdX2UKGgGR0Bx4tufmLccaAdNwAFoCEdAmGI1a8pTdnV9lChoBkdAbQAfOlfqo2gHTVICaAhHQJhjYO7QLNR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cde73134da0c3ca140a11b6c115f776d17ea76d93a18c57d21cf64d727cf968
3
+ size 148080
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e12bf45ff40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e12bf464040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e12bf4640d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e12bf464160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e12bf4641f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e12bf464280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e12bf464310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e12bf4643a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e12bf464430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e12bf4644c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e12bf464550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e12bf4645e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e12bf3f93c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1714974025300853875,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM13aD3teCc+nx4oPPQDVL4g7AW84mw4vQAAAAAAAAAA5vTZPeFYj7qDvH82ngR8MUdjTrrZRJS1AAAAAAAAgD+AyDI9KYhbunNAULOlunSvHBS+Oud+xTMAAIA/AACAP01gSr5ZNw0/3dS5PWymkb7ieUi9VUCMvQAAAAAAAAAAVvaAvnbpLD/m37M9rhiIvp7fgr1Sbno+AAAAAAAAAAAtvwC+5BNdP1UpY72vzpm+jQL5vMgD8zwAAAAAAAAAAA3UCb5pcCw/sBLSvBTrmr4pBPu9zlRsvQAAAAAAAAAAGlCYvcNVKLoeyOS6SWl4to34nDuZNgU6AAAAAAAAgD8ml3E+YSyeP5AGuz6UeFm+oY3EPm3XtT0AAAAAAAAAAOZ+k72F0+C5yFUAt6TJyrFMBCc6UFAWNgAAgD8AAIA/hgQEvj0Lc7uyhOW6QHwNuZX+ljx2ZvA5AACAPwAAgD96epg+RCqAPzpskj2JHom+5DhYPtpWsbwAAAAAAAAAAEAtiT0paAa6oYrDu9k4BjhXqTy7guQNtwAAgD8AAIA/AJfjPORZNz6ayfG94z2Evr/nMb3m8hm9AAAAAAAAAADayQY+DOcWP0qbIb5gKaC+d2uwPH3O+r0AAAAAAAAAAAAI+7wfLfq5I4h9us8+JbWff5a5dDaVOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRS/Ot4iX+MAWyUTegDjAF0lEdAl2wk1ZTya3V9lChoBkdAccJTOgQHzGgHTSABaAhHQJdtB3IMjNZ1fZQoaAZHQHAIoZydWhhoB01KAmgIR0CXdhs5GSZCdX2UKGgGR0BwH0blzU7TaAdNCgJoCEdAl3b/2PDHfnV9lChoBkdAZvqBBiTdL2gHTegDaAhHQJd4YZeiSJV1fZQoaAZHQGcMOhK15SpoB03oA2gIR0CXfPMHKOktdX2UKGgGR0BnPL8xbjcVaAdN6ANoCEdAl4AY24uscXV9lChoBkdAZFCrupjtomgHTegDaAhHQJeCXCO3lS11fZQoaAZHQG3XD9n9NvhoB01yAmgIR0CXh5PH1e0HdX2UKGgGR0BwqTM/yGzsaAdNsAJoCEdAl4zDhky1u3V9lChoBkdAOHQ1BMSK32gHS9VoCEdAl4662SdOI3V9lChoBkdAZMNiFTNt7GgHTegDaAhHQJeQZk/bCaZ1fZQoaAZHQGdmxg7YChhoB03oA2gIR0CXpOq0MPSVdX2UKGgGR0BhRqcPOIIoaAdN6ANoCEdAl6dJuMuOCHV9lChoBkdAZaN7fHggo2gHTegDaAhHQJeoQYaYNRZ1fZQoaAZHQGLF8lXzUZxoB03oA2gIR0CXqLtEXtSidX2UKGgGR0Bkeq9RJmNBaAdN6ANoCEdAl6mO+IuXeHV9lChoBkdAMUIO2AoXsWgHTQABaAhHQJeq4jRlYlp1fZQoaAZHQG/z4KhL5ARoB01gAmgIR0CXrYJvYODrdX2UKGgGR0BFFN+CsfaIaAdNEQFoCEdAl63vJ3gUDnV9lChoBkdAZUFRUFSsKmgHTegDaAhHQJevwn8baRJ1fZQoaAZHQDNd24d6syVoB0vgaAhHQJewrrnkkrx1fZQoaAZHQGVmk7W/ag5oB03oA2gIR0CXsLo371qWdX2UKGgGR0BwaBpi7TUiaAdNQgFoCEdAl7Y6R2bG3nV9lChoBkdAaDKDAaef7WgHTegDaAhHQJe5qL1mJ3x1fZQoaAZHQG172aMJhORoB013AWgIR0CXucDziCJ5dX2UKGgGR0BlUz1RLsa9aAdN6ANoCEdAl7rZ2dNFjXV9lChoBkdAY80Fi8WbgGgHTegDaAhHQJe8loDgZTB1fZQoaAZHQGWeo5YHPeJoB03oA2gIR0CXximF8G9pdX2UKGgGR0BtWmTA31jBaAdNDQJoCEdAl8249cKPXHV9lChoBkdAYVH0Fr2xp2gHTegDaAhHQJfPD3xnWat1fZQoaAZHQG0CDHXEqDtoB01KAWgIR0CXz3CxeLNwdX2UKGgGR0BwEdkUbkwOaAdN5wJoCEdAl9HIMWoFV3V9lChoBkdAcEN9QGfPHGgHTT8CaAhHQJfR5tzjm0V1fZQoaAZHQGLvQ1rIo3JoB03oA2gIR0CX1TMN+b3HdX2UKGgGR0BxRIhIOH32aAdN1gJoCEdAl9ZZhF3IMnV9lChoBkdAbw/sfq5byGgHTUUCaAhHQJfYUm8dxQ11fZQoaAZHQGUlCs4ku6FoB03oA2gIR0CX2Uo2n88+dX2UKGgGR0Bw73xYq5LAaAdNRAJoCEdAl+2/HktEonV9lChoBkdAaI6XqqwQlWgHTegDaAhHQJfz64TbnHN1fZQoaAZHQGyjcbaRISVoB01AAWgIR0CX9aCJGe+VdX2UKGgGR0BfMQyEcsDoaAdN6ANoCEdAl/dB9srNGHV9lChoBkdAYvCjkdV/+mgHTegDaAhHQJf7ZGpda+x1fZQoaAZHQG8KhJ7LMcJoB00rAmgIR0CX/qLLIPsidX2UKGgGR0BQEmbgCOm0aAdL4mgIR0CYAjoexOcldX2UKGgGR0BvKeJcgQpXaAdNawFoCEdAmAKtYjjaPHV9lChoBkdAbiEbjtG/e2gHTQICaAhHQJgD6OT7l7t1fZQoaAZHQGKUqoQ4CIVoB03oA2gIR0CYBa9s7+1jdX2UKGgGR0BkF6ekHlfaaAdN6ANoCEdAmAfSlnAZbnV9lChoBkdANngNCqp97WgHS9toCEdAmA1+vdM0xnV9lChoBkdAZuO7ZnL7oGgHTegDaAhHQJgPlSiudPN1fZQoaAZHQHAqX1anrIJoB01gA2gIR0CYEHI+4b0fdX2UKGgGR0BwPGUr08NhaAdN5AFoCEdAmBEhQemvXHV9lChoBkdAcG1uG9HtnmgHTSUCaAhHQJgROzF+/g11fZQoaAZHQHCuqHbh3q1oB000AWgIR0CYElXHzYmLdX2UKGgGR0Bi7kdHUc4paAdN6ANoCEdAmBametjkMnV9lChoBkdAY+3SMtK7I2gHTegDaAhHQJgZD4/NZ/11fZQoaAZHQG4eftx+8XhoB01iAWgIR0CYGWWdVea8dX2UKGgGR0BxcWoP07KaaAdNwgFoCEdAmBowZ0jkdXV9lChoBkdASbWKyfL9uWgHS89oCEdAmBpJBomG/XV9lChoBkdAbrm065oXbmgHTWECaAhHQJgamd07r9l1fZQoaAZHQGSLEkKNQ0poB03oA2gIR0CYHTJE6T4ddX2UKGgGR0BhRwI0IkZ8aAdN6ANoCEdAmB99cry1/nV9lChoBkdAZBpdJrcj7mgHTegDaAhHQJgglfD1oQF1fZQoaAZHQHFS17dBSk1oB02nAmgIR0CYIWbXYlIFdX2UKGgGR0BxB8bFS88LaAdNagFoCEdAmDU4Lw4KhXV9lChoBkdAcCTR1oxpL2gHTbUBaAhHQJg1U3n6l+F1fZQoaAZHQGwrXsPatcRoB03EAWgIR0CYN4mWMS9NdX2UKGgGR0Bt2xXbM5fdaAdNmgFoCEdAmDgmI42jwnV9lChoBkdAbfdTH80k4WgHTf0CaAhHQJg8/79AHFB1fZQoaAZHQHDHetGNJe5oB010AWgIR0CYPiq+8Gs4dX2UKGgGR0BwCOBjFyaNaAdNvgFoCEdAmEE/VEuxr3V9lChoBkdASTYBT4tYjmgHTQgBaAhHQJhBwU0vXbx1fZQoaAZHQG8lG9Htnf5oB00yAWgIR0CYQiKpDNQkdX2UKGgGR0Bx0lxCIDYAaAdNkAFoCEdAmEMEroW56XV9lChoBkdAb6wO+7Dl5mgHTV8BaAhHQJhDrFHavid1fZQoaAZHQHD0JlOGj9JoB033AWgIR0CYQ92VE/jbdX2UKGgGR0BsNk9Oh0yQaAdN8AFoCEdAmESs3hn8K3V9lChoBkdAcWrl+mWMTGgHTVwBaAhHQJhFqEWZZ0V1fZQoaAZHQHFiB+nZTQ5oB00WAmgIR0CYRnO0LMLXdX2UKGgGR0Bsghxeb/fgaAdNbQJoCEdAmEaG3KB/Z3V9lChoBkdAcRssguAZsWgHTXEBaAhHQJhITdGiHqN1fZQoaAZHQHDuFIy0rsloB00eA2gIR0CYSI7eVLSNdX2UKGgGR0ByDL8Nx2jgaAdNoQFoCEdAmEqGUW2w3nV9lChoBkdAcYCLjxTbWWgHTTEBaAhHQJhRKL5ylvZ1fZQoaAZHQHCf9VvMr3FoB02nAmgIR0CYUU0mdAgQdX2UKGgGR0BtVM6YE4ecaAdNjAFoCEdAmFT0mICU5nV9lChoBkdAcgx74i5d4WgHTS8BaAhHQJhV0xVQyh11fZQoaAZHQHBByNOuaF5oB02RAWgIR0CYVnah6By0dX2UKGgGR0BxChefI0ZWaAdNhgFoCEdAmFbLvXsgMnV9lChoBkdAcfSloUSIxmgHTQcCaAhHQJhX34xk/bF1fZQoaAZHQHECLLMcIZ9oB01iAmgIR0CYWzHnEETydX2UKGgGR0Bt2JNfw7T2aAdNagFoCEdAmFuUTtb9qHV9lChoBkdAcYRiZfD1oWgHTfoBaAhHQJhedi5NGmV1fZQoaAZHQHBr1ejVQRBoB01fAmgIR0CYX3irksBidX2UKGgGR0Bw0yCUX531aAdN3wFoCEdAmGCuwX668XV9lChoBkdAcJ7qxC6YmmgHTaQCaAhHQJhh8pYs/Y91fZQoaAZHQHBmdYGMXJpoB01fAmgIR0CYYgCfHxSYdX2UKGgGR0Bx4tufmLccaAdNwAFoCEdAmGI1a8pTdnV9lChoBkdAbQAfOlfqo2gHTVICaAhHQJhjYO7QLNR1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 252,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fa663f530f19eb8c9196de966e7b16bcc79c8f43282add8632d2ccd4e5ec9bf
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6220585561d6cbbbfc848499e07459713950915b0ea126b1d8d240e27b194df9
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (181 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 250.13997206687435, "std_reward": 23.21389868099378, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-06T06:05:22.244357"}