File size: 68,029 Bytes
34c9fc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
---
language:
- en
tags:
- sentence-transformers
- cross-encoder
- reranker
- generated_from_trainer
- dataset_size:990000
- loss:BinaryCrossEntropyLoss
base_model: jhu-clsp/ettin-encoder-17m
datasets:
- sentence-transformers/msmarco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on jhu-clsp/ettin-encoder-17m
results:
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoMSMARCO R100
type: NanoMSMARCO_R100
metrics:
- type: map
value: 0.5817
name: Map
- type: mrr@10
value: 0.5753
name: Mrr@10
- type: ndcg@10
value: 0.6427
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNFCorpus R100
type: NanoNFCorpus_R100
metrics:
- type: map
value: 0.3167
name: Map
- type: mrr@10
value: 0.4952
name: Mrr@10
- type: ndcg@10
value: 0.334
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNQ R100
type: NanoNQ_R100
metrics:
- type: map
value: 0.5585
name: Map
- type: mrr@10
value: 0.5632
name: Mrr@10
- type: ndcg@10
value: 0.6215
name: Ndcg@10
- task:
type: cross-encoder-nano-beir
name: Cross Encoder Nano BEIR
dataset:
name: NanoBEIR R100 mean
type: NanoBEIR_R100_mean
metrics:
- type: map
value: 0.4856
name: Map
- type: mrr@10
value: 0.5446
name: Mrr@10
- type: ndcg@10
value: 0.5327
name: Ndcg@10
---
# CrossEncoder based on jhu-clsp/ettin-encoder-17m
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) <!-- at revision 987607455c61e7a5bbc85f7758e0512ea6d0ae4c -->
- **Maximum Sequence Length:** 7999 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
- [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("rahulseetharaman/reranker-ettin-encoder-17m-msmarco-bce-1m")
# Get scores for pairs of texts
pairs = [
['star voyager cast', 'On August 25, 2012, data from Voyager 1 indicated that it had become the first human-made object to enter interstellar space, traveling further than anyone, or anything, in history. As of 2013, Voyager 1 was moving with a velocity of 17 kilometers per second (11 mi/s) relative to the Sun. Voyager 2 is expected to enter interstellar space by 2016, and its plasma spectrometer should provide the first direct measurements of the density and temperature of the interstellar plasma.'],
['physiologist who conducted the classical conditioning studies with dogs', "Classical Conditioning. The people who fed Pavlov's dogs wore lab coats. Pavlov noticed that the dogs began to drool whenever they saw lab coats, even if there was no food in sight. Pavlov wondered why the dogs salivated at lab coats, and not just at food."],
['is a written check considered a contract', 'If you bought a flat screen TV and are paying it off monthly, thatâ\x80\x99s considered recurring debt because you canâ\x80\x99t easily cancel your payments. If you subscribe to a magazine or have an Internet or phone contract, those obligations are not considered recurring debt because there is no fixed debt amount you are paying down and you can cancel your contract.'],
['definition of an actuator', 'An actuator is a type of motor that is responsible for moving or controlling a mechanism or system. It is operated by a source of energy, typically electric current, hydraulic fluid pressure, or pneumatic pressure, and converts that energy into motion. An actuator is the mechanism by which a control system acts upon an environment. The control system can be simple (a fixed mechanical or electronic system), software-based (e.g. a printer driver, robot control system), a human, or any other input.'],
['what are rheumatoid arthritis symptoms', 'While early RA symptoms can be mimicked by other diseases, the symptoms and signs are very characteristic of rheumatoid disease. The 15 early rheumatoid arthritis symptoms and signs discussed in this article include the following: Fatigue. Joint pain. Joint tenderness. Joint swelling. Joint redness. Joint warmth.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'star voyager cast',
[
'On August 25, 2012, data from Voyager 1 indicated that it had become the first human-made object to enter interstellar space, traveling further than anyone, or anything, in history. As of 2013, Voyager 1 was moving with a velocity of 17 kilometers per second (11 mi/s) relative to the Sun. Voyager 2 is expected to enter interstellar space by 2016, and its plasma spectrometer should provide the first direct measurements of the density and temperature of the interstellar plasma.',
"Classical Conditioning. The people who fed Pavlov's dogs wore lab coats. Pavlov noticed that the dogs began to drool whenever they saw lab coats, even if there was no food in sight. Pavlov wondered why the dogs salivated at lab coats, and not just at food.",
'If you bought a flat screen TV and are paying it off monthly, thatâ\x80\x99s considered recurring debt because you canâ\x80\x99t easily cancel your payments. If you subscribe to a magazine or have an Internet or phone contract, those obligations are not considered recurring debt because there is no fixed debt amount you are paying down and you can cancel your contract.',
'An actuator is a type of motor that is responsible for moving or controlling a mechanism or system. It is operated by a source of energy, typically electric current, hydraulic fluid pressure, or pneumatic pressure, and converts that energy into motion. An actuator is the mechanism by which a control system acts upon an environment. The control system can be simple (a fixed mechanical or electronic system), software-based (e.g. a printer driver, robot control system), a human, or any other input.',
'While early RA symptoms can be mimicked by other diseases, the symptoms and signs are very characteristic of rheumatoid disease. The 15 early rheumatoid arthritis symptoms and signs discussed in this article include the following: Fatigue. Joint pain. Joint tenderness. Joint swelling. Joint redness. Joint warmth.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Reranking
* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
```json
{
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
|:------------|:---------------------|:---------------------|:---------------------|
| map | 0.5817 (+0.0921) | 0.3167 (+0.0557) | 0.5585 (+0.1388) |
| mrr@10 | 0.5753 (+0.0978) | 0.4952 (-0.0046) | 0.5632 (+0.1366) |
| **ndcg@10** | **0.6427 (+0.1023)** | **0.3340 (+0.0089)** | **0.6215 (+0.1208)** |
#### Cross Encoder Nano BEIR
* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | Value |
|:------------|:---------------------|
| map | 0.4856 (+0.0956) |
| mrr@10 | 0.5446 (+0.0766) |
| **ndcg@10** | **0.5327 (+0.0773)** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### msmarco
* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 990,000 training samples
* Columns: <code>query</code>, <code>passage</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | query | passage | score |
|:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 10 characters</li><li>mean: 34.06 characters</li><li>max: 103 characters</li></ul> | <ul><li>min: 55 characters</li><li>mean: 341.02 characters</li><li>max: 943 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
* Samples:
| query | passage | score |
|:----------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>can a urinalysis detect kidney disease</code> | <code>A urinalysis is a simple, inexpensive test that can help to detect problems in many parts of the body, including the kidneys, urinary tract, heart, and liver. A urinalysis can include a visual examination of a urine sample, microscopic examination, and a dipstick test.</code> | <code>1.0</code> |
| <code>what is the hamsa hand</code> | <code>Answer by Mikereptile. Confidence votes 60. It takes about 6-8 weeks to heal, depending on the type of injury sustained. (Keep the finger as still as you can !!!!). When broken place the hand in ice cold water for about 5 min.s then take it and wrap the whole hand in a soft wrap (anything that is a soft colth) .Take the wraped hand and hold it above or upright to the head.hen broken place the hand in ice cold water for about 5 min.s then take it and wrap the whole hand in a soft wrap (anything that is a soft colth) . Take the wraped hand and hold it above or upright to the head.</code> | <code>0.0</code> |
| <code>was white tiger in the us zoo killed?</code> | <code>Cubby is a male American black bear born at the Chahinkapa Zoo in North Dakota. He was transferred to the Hogle Zoo (Salt Lake City, Utah) in 2003, and arrived at the Oregon Zoo in May 2010.</code> | <code>0.0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
```json
{
"activation_fn": "torch.nn.modules.linear.Identity",
"pos_weight": null
}
```
### Evaluation Dataset
#### msmarco
* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 10,000 evaluation samples
* Columns: <code>query</code>, <code>passage</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | query | passage | score |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 10 characters</li><li>mean: 33.97 characters</li><li>max: 121 characters</li></ul> | <ul><li>min: 70 characters</li><li>mean: 345.9 characters</li><li>max: 946 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.48</li><li>max: 1.0</li></ul> |
* Samples:
| query | passage | score |
|:-------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>star voyager cast</code> | <code>On August 25, 2012, data from Voyager 1 indicated that it had become the first human-made object to enter interstellar space, traveling further than anyone, or anything, in history. As of 2013, Voyager 1 was moving with a velocity of 17 kilometers per second (11 mi/s) relative to the Sun. Voyager 2 is expected to enter interstellar space by 2016, and its plasma spectrometer should provide the first direct measurements of the density and temperature of the interstellar plasma.</code> | <code>0.0</code> |
| <code>physiologist who conducted the classical conditioning studies with dogs</code> | <code>Classical Conditioning. The people who fed Pavlov's dogs wore lab coats. Pavlov noticed that the dogs began to drool whenever they saw lab coats, even if there was no food in sight. Pavlov wondered why the dogs salivated at lab coats, and not just at food.</code> | <code>0.0</code> |
| <code>is a written check considered a contract</code> | <code>If you bought a flat screen TV and are paying it off monthly, thatâs considered recurring debt because you canât easily cancel your payments. If you subscribe to a magazine or have an Internet or phone contract, those obligations are not considered recurring debt because there is no fixed debt amount you are paying down and you can cancel your contract.</code> | <code>0.0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
```json
{
"activation_fn": "torch.nn.modules.linear.Identity",
"pos_weight": null
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
|:----------:|:----------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
| -1 | -1 | - | - | 0.0063 (-0.5341) | 0.1891 (-0.1359) | 0.0144 (-0.4863) | 0.0699 (-0.3854) |
| 0.0000 | 1 | 1.2012 | - | - | - | - | - |
| 0.0162 | 1000 | 0.9995 | 0.7650 | 0.0209 (-0.5195) | 0.1857 (-0.1393) | 0.0357 (-0.4649) | 0.0808 (-0.3746) |
| 0.0323 | 2000 | 0.7166 | 0.6700 | 0.0632 (-0.4772) | 0.1887 (-0.1363) | 0.0668 (-0.4338) | 0.1063 (-0.3491) |
| 0.0485 | 3000 | 0.6672 | 0.6422 | 0.1130 (-0.4275) | 0.2264 (-0.0986) | 0.0824 (-0.4182) | 0.1406 (-0.3148) |
| 0.0646 | 4000 | 0.6315 | 0.5913 | 0.2003 (-0.3401) | 0.2182 (-0.1069) | 0.1436 (-0.3570) | 0.1874 (-0.2680) |
| 0.0808 | 5000 | 0.5006 | 0.4275 | 0.4365 (-0.1040) | 0.3056 (-0.0194) | 0.3410 (-0.1597) | 0.3610 (-0.0944) |
| 0.0970 | 6000 | 0.4132 | 0.3963 | 0.4640 (-0.0764) | 0.2955 (-0.0295) | 0.4103 (-0.0904) | 0.3899 (-0.0654) |
| 0.1131 | 7000 | 0.3903 | 0.3809 | 0.4609 (-0.0795) | 0.3152 (-0.0098) | 0.4142 (-0.0865) | 0.3968 (-0.0586) |
| 0.1293 | 8000 | 0.3775 | 0.3585 | 0.5074 (-0.0330) | 0.3235 (-0.0015) | 0.4683 (-0.0323) | 0.4331 (-0.0223) |
| 0.1455 | 9000 | 0.3585 | 0.3420 | 0.5153 (-0.0251) | 0.3215 (-0.0035) | 0.4795 (-0.0212) | 0.4388 (-0.0166) |
| 0.1616 | 10000 | 0.349 | 0.3378 | 0.4864 (-0.0540) | 0.3254 (+0.0003) | 0.4724 (-0.0283) | 0.4281 (-0.0273) |
| 0.1778 | 11000 | 0.3372 | 0.3344 | 0.5150 (-0.0254) | 0.3350 (+0.0099) | 0.4981 (-0.0026) | 0.4494 (-0.0060) |
| 0.1939 | 12000 | 0.3412 | 0.3288 | 0.5079 (-0.0325) | 0.3427 (+0.0177) | 0.5165 (+0.0158) | 0.4557 (+0.0003) |
| 0.2101 | 13000 | 0.3251 | 0.3159 | 0.5217 (-0.0188) | 0.3469 (+0.0218) | 0.4914 (-0.0093) | 0.4533 (-0.0021) |
| 0.2263 | 14000 | 0.3215 | 0.3537 | 0.5656 (+0.0252) | 0.3489 (+0.0239) | 0.4858 (-0.0149) | 0.4668 (+0.0114) |
| 0.2424 | 15000 | 0.3206 | 0.3624 | 0.5834 (+0.0430) | 0.3456 (+0.0206) | 0.5339 (+0.0333) | 0.4877 (+0.0323) |
| 0.2586 | 16000 | 0.3111 | 0.2994 | 0.5477 (+0.0073) | 0.3369 (+0.0119) | 0.5215 (+0.0209) | 0.4687 (+0.0133) |
| 0.2747 | 17000 | 0.2941 | 0.2937 | 0.5408 (+0.0004) | 0.3294 (+0.0044) | 0.5369 (+0.0363) | 0.4691 (+0.0137) |
| 0.2909 | 18000 | 0.3002 | 0.3144 | 0.5402 (-0.0003) | 0.3493 (+0.0242) | 0.5800 (+0.0794) | 0.4898 (+0.0344) |
| 0.3071 | 19000 | 0.2965 | 0.2866 | 0.5768 (+0.0364) | 0.3442 (+0.0191) | 0.5298 (+0.0292) | 0.4836 (+0.0282) |
| 0.3232 | 20000 | 0.2943 | 0.3069 | 0.5180 (-0.0224) | 0.3354 (+0.0104) | 0.5441 (+0.0434) | 0.4658 (+0.0105) |
| 0.3394 | 21000 | 0.29 | 0.2872 | 0.5530 (+0.0126) | 0.3484 (+0.0233) | 0.5690 (+0.0684) | 0.4901 (+0.0348) |
| 0.3556 | 22000 | 0.2793 | 0.2769 | 0.5690 (+0.0285) | 0.3357 (+0.0107) | 0.5312 (+0.0305) | 0.4786 (+0.0232) |
| 0.3717 | 23000 | 0.2954 | 0.2957 | 0.5798 (+0.0394) | 0.3536 (+0.0286) | 0.5581 (+0.0574) | 0.4972 (+0.0418) |
| 0.3879 | 24000 | 0.2841 | 0.3262 | 0.5342 (-0.0062) | 0.3391 (+0.0141) | 0.5265 (+0.0259) | 0.4666 (+0.0112) |
| 0.4040 | 25000 | 0.2755 | 0.2752 | 0.5600 (+0.0196) | 0.3442 (+0.0192) | 0.5782 (+0.0776) | 0.4942 (+0.0388) |
| 0.4202 | 26000 | 0.281 | 0.2740 | 0.5068 (-0.0336) | 0.3384 (+0.0133) | 0.5443 (+0.0437) | 0.4632 (+0.0078) |
| 0.4364 | 27000 | 0.2814 | 0.2854 | 0.5585 (+0.0180) | 0.3446 (+0.0196) | 0.5681 (+0.0674) | 0.4904 (+0.0350) |
| 0.4525 | 28000 | 0.2742 | 0.2584 | 0.5493 (+0.0089) | 0.3570 (+0.0319) | 0.5762 (+0.0755) | 0.4942 (+0.0388) |
| 0.4687 | 29000 | 0.2675 | 0.2589 | 0.5494 (+0.0089) | 0.3492 (+0.0242) | 0.5686 (+0.0680) | 0.4891 (+0.0337) |
| 0.4848 | 30000 | 0.2619 | 0.2538 | 0.5808 (+0.0404) | 0.3527 (+0.0276) | 0.5401 (+0.0394) | 0.4912 (+0.0358) |
| 0.5010 | 31000 | 0.2713 | 0.2515 | 0.5652 (+0.0248) | 0.3298 (+0.0048) | 0.5801 (+0.0795) | 0.4917 (+0.0363) |
| 0.5172 | 32000 | 0.2574 | 0.3014 | 0.5480 (+0.0076) | 0.3563 (+0.0312) | 0.5725 (+0.0718) | 0.4922 (+0.0369) |
| 0.5333 | 33000 | 0.2567 | 0.2510 | 0.5727 (+0.0323) | 0.3499 (+0.0249) | 0.5636 (+0.0629) | 0.4954 (+0.0400) |
| 0.5495 | 34000 | 0.2572 | 0.2535 | 0.5568 (+0.0164) | 0.3467 (+0.0217) | 0.5839 (+0.0832) | 0.4958 (+0.0404) |
| 0.5657 | 35000 | 0.2582 | 0.2554 | 0.5660 (+0.0255) | 0.3351 (+0.0101) | 0.5824 (+0.0818) | 0.4945 (+0.0391) |
| 0.5818 | 36000 | 0.2499 | 0.2409 | 0.5643 (+0.0239) | 0.3227 (-0.0023) | 0.5719 (+0.0712) | 0.4863 (+0.0309) |
| 0.5980 | 37000 | 0.2479 | 0.2562 | 0.5324 (-0.0081) | 0.3309 (+0.0058) | 0.6002 (+0.0995) | 0.4878 (+0.0324) |
| 0.6141 | 38000 | 0.2438 | 0.2474 | 0.5324 (-0.0080) | 0.3232 (-0.0018) | 0.5799 (+0.0793) | 0.4785 (+0.0232) |
| 0.6303 | 39000 | 0.2472 | 0.2624 | 0.5241 (-0.0163) | 0.3193 (-0.0058) | 0.5838 (+0.0832) | 0.4757 (+0.0204) |
| 0.6465 | 40000 | 0.248 | 0.2449 | 0.5447 (+0.0042) | 0.3325 (+0.0074) | 0.6142 (+0.1136) | 0.4971 (+0.0418) |
| 0.6626 | 41000 | 0.2417 | 0.2689 | 0.5267 (-0.0138) | 0.3330 (+0.0080) | 0.5971 (+0.0965) | 0.4856 (+0.0302) |
| 0.6788 | 42000 | 0.2415 | 0.2299 | 0.5760 (+0.0356) | 0.3361 (+0.0111) | 0.6060 (+0.1053) | 0.5060 (+0.0507) |
| 0.6949 | 43000 | 0.2385 | 0.2430 | 0.5601 (+0.0197) | 0.3342 (+0.0092) | 0.5737 (+0.0731) | 0.4894 (+0.0340) |
| 0.7111 | 44000 | 0.2373 | 0.2401 | 0.5565 (+0.0161) | 0.3133 (-0.0117) | 0.5520 (+0.0513) | 0.4739 (+0.0186) |
| 0.7273 | 45000 | 0.2372 | 0.2372 | 0.5837 (+0.0432) | 0.3290 (+0.0039) | 0.5807 (+0.0801) | 0.4978 (+0.0424) |
| 0.7434 | 46000 | 0.2398 | 0.2250 | 0.5616 (+0.0212) | 0.3155 (-0.0095) | 0.5714 (+0.0707) | 0.4829 (+0.0275) |
| 0.7596 | 47000 | 0.2382 | 0.2331 | 0.5780 (+0.0376) | 0.3371 (+0.0121) | 0.5730 (+0.0723) | 0.4961 (+0.0407) |
| 0.7758 | 48000 | 0.2381 | 0.2221 | 0.5442 (+0.0038) | 0.3196 (-0.0055) | 0.5807 (+0.0801) | 0.4815 (+0.0261) |
| 0.7919 | 49000 | 0.2293 | 0.2382 | 0.5726 (+0.0322) | 0.3517 (+0.0266) | 0.5834 (+0.0828) | 0.5026 (+0.0472) |
| 0.8081 | 50000 | 0.239 | 0.2202 | 0.5722 (+0.0318) | 0.3275 (+0.0024) | 0.5660 (+0.0654) | 0.4886 (+0.0332) |
| 0.8242 | 51000 | 0.2425 | 0.2179 | 0.5374 (-0.0031) | 0.3320 (+0.0070) | 0.5491 (+0.0484) | 0.4728 (+0.0174) |
| 0.8404 | 52000 | 0.2322 | 0.2232 | 0.5853 (+0.0448) | 0.3212 (-0.0038) | 0.5989 (+0.0982) | 0.5018 (+0.0464) |
| 0.8566 | 53000 | 0.2334 | 0.2197 | 0.5998 (+0.0593) | 0.3418 (+0.0168) | 0.5764 (+0.0758) | 0.5060 (+0.0506) |
| 0.8727 | 54000 | 0.2311 | 0.2162 | 0.5865 (+0.0461) | 0.3334 (+0.0084) | 0.6019 (+0.1012) | 0.5073 (+0.0519) |
| 0.8889 | 55000 | 0.2335 | 0.2430 | 0.5883 (+0.0478) | 0.3460 (+0.0210) | 0.5884 (+0.0878) | 0.5076 (+0.0522) |
| 0.9051 | 56000 | 0.2363 | 0.2256 | 0.5912 (+0.0508) | 0.3414 (+0.0163) | 0.6453 (+0.1446) | 0.5260 (+0.0706) |
| 0.9212 | 57000 | 0.2282 | 0.2139 | 0.6185 (+0.0780) | 0.3479 (+0.0228) | 0.6282 (+0.1276) | 0.5315 (+0.0762) |
| 0.9374 | 58000 | 0.2255 | 0.2128 | 0.5609 (+0.0204) | 0.3350 (+0.0100) | 0.6497 (+0.1490) | 0.5152 (+0.0598) |
| 0.9535 | 59000 | 0.2187 | 0.2262 | 0.6041 (+0.0637) | 0.3355 (+0.0104) | 0.5946 (+0.0940) | 0.5114 (+0.0560) |
| 0.9697 | 60000 | 0.2275 | 0.2034 | 0.6085 (+0.0681) | 0.3471 (+0.0220) | 0.5953 (+0.0946) | 0.5169 (+0.0616) |
| 0.9859 | 61000 | 0.2214 | 0.2146 | 0.5883 (+0.0479) | 0.3304 (+0.0053) | 0.6115 (+0.1109) | 0.5101 (+0.0547) |
| 1.0020 | 62000 | 0.2186 | 0.2428 | 0.5690 (+0.0285) | 0.3374 (+0.0123) | 0.6002 (+0.0996) | 0.5022 (+0.0468) |
| 1.0182 | 63000 | 0.1915 | 0.2645 | 0.5836 (+0.0432) | 0.3490 (+0.0239) | 0.6123 (+0.1116) | 0.5150 (+0.0596) |
| 1.0343 | 64000 | 0.1927 | 0.2274 | 0.5768 (+0.0364) | 0.3428 (+0.0178) | 0.6025 (+0.1018) | 0.5074 (+0.0520) |
| 1.0505 | 65000 | 0.196 | 0.2261 | 0.5649 (+0.0245) | 0.3589 (+0.0339) | 0.5758 (+0.0751) | 0.4999 (+0.0445) |
| 1.0667 | 66000 | 0.1863 | 0.2654 | 0.5368 (-0.0036) | 0.3309 (+0.0058) | 0.5418 (+0.0411) | 0.4698 (+0.0144) |
| 1.0828 | 67000 | 0.183 | 0.2627 | 0.5583 (+0.0179) | 0.3401 (+0.0151) | 0.5778 (+0.0772) | 0.4921 (+0.0367) |
| 1.0990 | 68000 | 0.1935 | 0.2293 | 0.5624 (+0.0220) | 0.3434 (+0.0184) | 0.6066 (+0.1059) | 0.5041 (+0.0487) |
| 1.1152 | 69000 | 0.1803 | 0.2406 | 0.5785 (+0.0381) | 0.3147 (-0.0103) | 0.5747 (+0.0740) | 0.4893 (+0.0339) |
| 1.1313 | 70000 | 0.194 | 0.2325 | 0.5985 (+0.0581) | 0.3146 (-0.0105) | 0.5678 (+0.0671) | 0.4936 (+0.0382) |
| 1.1475 | 71000 | 0.188 | 0.2536 | 0.5940 (+0.0536) | 0.3316 (+0.0065) | 0.6098 (+0.1091) | 0.5118 (+0.0564) |
| 1.1636 | 72000 | 0.1912 | 0.2714 | 0.5749 (+0.0345) | 0.3357 (+0.0106) | 0.6128 (+0.1121) | 0.5078 (+0.0524) |
| 1.1798 | 73000 | 0.1917 | 0.3131 | 0.5765 (+0.0361) | 0.3401 (+0.0150) | 0.6241 (+0.1235) | 0.5136 (+0.0582) |
| 1.1960 | 74000 | 0.1898 | 0.2505 | 0.5942 (+0.0538) | 0.3556 (+0.0305) | 0.5866 (+0.0860) | 0.5121 (+0.0568) |
| 1.2121 | 75000 | 0.1892 | 0.2275 | 0.5775 (+0.0371) | 0.3611 (+0.0361) | 0.5633 (+0.0626) | 0.5006 (+0.0453) |
| 1.2283 | 76000 | 0.1907 | 0.2238 | 0.5260 (-0.0145) | 0.3336 (+0.0085) | 0.5666 (+0.0660) | 0.4754 (+0.0200) |
| 1.2444 | 77000 | 0.1866 | 0.2380 | 0.4978 (-0.0426) | 0.3180 (-0.0070) | 0.5704 (+0.0697) | 0.4621 (+0.0067) |
| 1.2606 | 78000 | 0.1897 | 0.2428 | 0.5492 (+0.0088) | 0.3408 (+0.0157) | 0.5884 (+0.0878) | 0.4928 (+0.0374) |
| 1.2768 | 79000 | 0.1875 | 0.2627 | 0.5643 (+0.0239) | 0.3465 (+0.0215) | 0.6214 (+0.1207) | 0.5107 (+0.0554) |
| 1.2929 | 80000 | 0.1915 | 0.2186 | 0.5827 (+0.0422) | 0.3416 (+0.0166) | 0.6193 (+0.1186) | 0.5145 (+0.0591) |
| 1.3091 | 81000 | 0.1932 | 0.2225 | 0.5645 (+0.0241) | 0.3313 (+0.0062) | 0.6047 (+0.1040) | 0.5002 (+0.0448) |
| 1.3253 | 82000 | 0.1897 | 0.2206 | 0.5730 (+0.0325) | 0.3219 (-0.0031) | 0.6044 (+0.1038) | 0.4998 (+0.0444) |
| 1.3414 | 83000 | 0.1889 | 0.2299 | 0.5975 (+0.0571) | 0.3430 (+0.0179) | 0.5976 (+0.0970) | 0.5127 (+0.0573) |
| 1.3576 | 84000 | 0.194 | 0.2273 | 0.5971 (+0.0566) | 0.3427 (+0.0176) | 0.5943 (+0.0937) | 0.5114 (+0.0560) |
| 1.3737 | 85000 | 0.1881 | 0.2402 | 0.5706 (+0.0302) | 0.3492 (+0.0241) | 0.6197 (+0.1190) | 0.5132 (+0.0578) |
| 1.3899 | 86000 | 0.1855 | 0.2405 | 0.5710 (+0.0306) | 0.3261 (+0.0010) | 0.6067 (+0.1060) | 0.5012 (+0.0459) |
| 1.4061 | 87000 | 0.19 | 0.2249 | 0.5385 (-0.0019) | 0.3298 (+0.0047) | 0.5906 (+0.0899) | 0.4863 (+0.0309) |
| 1.4222 | 88000 | 0.1853 | 0.2323 | 0.5497 (+0.0092) | 0.3367 (+0.0117) | 0.5880 (+0.0874) | 0.4915 (+0.0361) |
| 1.4384 | 89000 | 0.1808 | 0.2654 | 0.5643 (+0.0239) | 0.3418 (+0.0168) | 0.5835 (+0.0829) | 0.4965 (+0.0412) |
| 1.4545 | 90000 | 0.182 | 0.2609 | 0.5526 (+0.0122) | 0.3624 (+0.0374) | 0.5771 (+0.0765) | 0.4974 (+0.0420) |
| 1.4707 | 91000 | 0.1931 | 0.2237 | 0.5589 (+0.0185) | 0.3429 (+0.0178) | 0.5927 (+0.0920) | 0.4982 (+0.0428) |
| 1.4869 | 92000 | 0.1925 | 0.2430 | 0.5416 (+0.0012) | 0.3413 (+0.0163) | 0.6082 (+0.1076) | 0.4971 (+0.0417) |
| 1.5030 | 93000 | 0.1861 | 0.2241 | 0.5313 (-0.0091) | 0.3340 (+0.0090) | 0.6134 (+0.1127) | 0.4929 (+0.0375) |
| 1.5192 | 94000 | 0.189 | 0.2293 | 0.5509 (+0.0104) | 0.3488 (+0.0237) | 0.6448 (+0.1441) | 0.5148 (+0.0594) |
| 1.5354 | 95000 | 0.1816 | 0.2433 | 0.5640 (+0.0235) | 0.3529 (+0.0279) | 0.6121 (+0.1114) | 0.5096 (+0.0543) |
| 1.5515 | 96000 | 0.1901 | 0.2338 | 0.5411 (+0.0007) | 0.3238 (-0.0013) | 0.5729 (+0.0722) | 0.4793 (+0.0239) |
| 1.5677 | 97000 | 0.1921 | 0.2261 | 0.5831 (+0.0427) | 0.3173 (-0.0077) | 0.5830 (+0.0824) | 0.4945 (+0.0391) |
| 1.5838 | 98000 | 0.1854 | 0.2105 | 0.6028 (+0.0624) | 0.3176 (-0.0075) | 0.5702 (+0.0695) | 0.4969 (+0.0415) |
| 1.6 | 99000 | 0.1788 | 0.2330 | 0.5942 (+0.0537) | 0.3395 (+0.0144) | 0.5930 (+0.0923) | 0.5089 (+0.0535) |
| 1.6162 | 100000 | 0.1857 | 0.2230 | 0.5520 (+0.0116) | 0.3475 (+0.0225) | 0.5789 (+0.0782) | 0.4928 (+0.0374) |
| 1.6323 | 101000 | 0.1862 | 0.2140 | 0.5523 (+0.0118) | 0.3507 (+0.0256) | 0.5693 (+0.0686) | 0.4907 (+0.0354) |
| 1.6485 | 102000 | 0.1875 | 0.2310 | 0.5887 (+0.0483) | 0.3360 (+0.0110) | 0.6228 (+0.1221) | 0.5158 (+0.0605) |
| 1.6646 | 103000 | 0.1829 | 0.2354 | 0.6083 (+0.0678) | 0.3242 (-0.0008) | 0.5638 (+0.0632) | 0.4988 (+0.0434) |
| 1.6808 | 104000 | 0.1833 | 0.2270 | 0.6003 (+0.0599) | 0.3294 (+0.0043) | 0.5684 (+0.0677) | 0.4994 (+0.0440) |
| 1.6970 | 105000 | 0.1835 | 0.2339 | 0.5815 (+0.0411) | 0.3336 (+0.0086) | 0.5867 (+0.0861) | 0.5006 (+0.0452) |
| 1.7131 | 106000 | 0.1866 | 0.2264 | 0.6492 (+0.1088) | 0.3375 (+0.0125) | 0.5975 (+0.0969) | 0.5281 (+0.0727) |
| 1.7293 | 107000 | 0.184 | 0.2233 | 0.6022 (+0.0618) | 0.3240 (-0.0010) | 0.5915 (+0.0909) | 0.5059 (+0.0505) |
| 1.7455 | 108000 | 0.1777 | 0.2284 | 0.5873 (+0.0468) | 0.3303 (+0.0052) | 0.5723 (+0.0717) | 0.4966 (+0.0412) |
| 1.7616 | 109000 | 0.1853 | 0.2155 | 0.6158 (+0.0754) | 0.3256 (+0.0006) | 0.6262 (+0.1255) | 0.5225 (+0.0672) |
| 1.7778 | 110000 | 0.1825 | 0.2223 | 0.5893 (+0.0489) | 0.3247 (-0.0003) | 0.6125 (+0.1119) | 0.5088 (+0.0535) |
| 1.7939 | 111000 | 0.1807 | 0.2361 | 0.6071 (+0.0667) | 0.3243 (-0.0007) | 0.5889 (+0.0883) | 0.5068 (+0.0514) |
| 1.8101 | 112000 | 0.1771 | 0.2227 | 0.5861 (+0.0457) | 0.3113 (-0.0137) | 0.5967 (+0.0960) | 0.4980 (+0.0426) |
| 1.8263 | 113000 | 0.1805 | 0.2499 | 0.5885 (+0.0480) | 0.3377 (+0.0126) | 0.5991 (+0.0985) | 0.5084 (+0.0531) |
| 1.8424 | 114000 | 0.1805 | 0.2228 | 0.5795 (+0.0391) | 0.3346 (+0.0095) | 0.5950 (+0.0943) | 0.5030 (+0.0477) |
| 1.8586 | 115000 | 0.1758 | 0.2367 | 0.6095 (+0.0690) | 0.3278 (+0.0028) | 0.6161 (+0.1155) | 0.5178 (+0.0624) |
| **1.8747** | **116000** | **0.1822** | **0.2063** | **0.6427 (+0.1023)** | **0.3340 (+0.0089)** | **0.6215 (+0.1208)** | **0.5327 (+0.0773)** |
| 1.8909 | 117000 | 0.1729 | 0.2290 | 0.6042 (+0.0638) | 0.3210 (-0.0041) | 0.6162 (+0.1156) | 0.5138 (+0.0584) |
| 1.9071 | 118000 | 0.1776 | 0.2273 | 0.6076 (+0.0672) | 0.3143 (-0.0108) | 0.5745 (+0.0739) | 0.4988 (+0.0434) |
| 1.9232 | 119000 | 0.1948 | 0.2064 | 0.6132 (+0.0727) | 0.3107 (-0.0143) | 0.6221 (+0.1214) | 0.5153 (+0.0599) |
| 1.9394 | 120000 | 0.1794 | 0.2492 | 0.6051 (+0.0646) | 0.3194 (-0.0057) | 0.6195 (+0.1189) | 0.5147 (+0.0593) |
| 1.9556 | 121000 | 0.1856 | 0.2207 | 0.6279 (+0.0875) | 0.3173 (-0.0077) | 0.6120 (+0.1113) | 0.5191 (+0.0637) |
| 1.9717 | 122000 | 0.1824 | 0.2219 | 0.6085 (+0.0680) | 0.3222 (-0.0029) | 0.6116 (+0.1110) | 0.5141 (+0.0587) |
| 1.9879 | 123000 | 0.1862 | 0.2265 | 0.6011 (+0.0606) | 0.3196 (-0.0054) | 0.6012 (+0.1005) | 0.5073 (+0.0519) |
| 2.0040 | 124000 | 0.1665 | 0.2642 | 0.6196 (+0.0792) | 0.3263 (+0.0012) | 0.5959 (+0.0952) | 0.5139 (+0.0586) |
| 2.0202 | 125000 | 0.1217 | 0.2795 | 0.5885 (+0.0481) | 0.3190 (-0.0061) | 0.6079 (+0.1073) | 0.5051 (+0.0498) |
| 2.0364 | 126000 | 0.1255 | 0.2832 | 0.5844 (+0.0440) | 0.3073 (-0.0178) | 0.6131 (+0.1125) | 0.5016 (+0.0462) |
| 2.0525 | 127000 | 0.1369 | 0.2737 | 0.5447 (+0.0043) | 0.3070 (-0.0181) | 0.6152 (+0.1146) | 0.4890 (+0.0336) |
| 2.0687 | 128000 | 0.1385 | 0.2814 | 0.5753 (+0.0349) | 0.3213 (-0.0037) | 0.6019 (+0.1013) | 0.4995 (+0.0441) |
| 2.0848 | 129000 | 0.1321 | 0.2771 | 0.5796 (+0.0391) | 0.3065 (-0.0185) | 0.6127 (+0.1121) | 0.4996 (+0.0442) |
| 2.1010 | 130000 | 0.1355 | 0.2672 | 0.5828 (+0.0424) | 0.3000 (-0.0251) | 0.6200 (+0.1193) | 0.5009 (+0.0455) |
| 2.1172 | 131000 | 0.1409 | 0.2741 | 0.5764 (+0.0359) | 0.3017 (-0.0234) | 0.5737 (+0.0731) | 0.4839 (+0.0285) |
| 2.1333 | 132000 | 0.1353 | 0.2903 | 0.5817 (+0.0413) | 0.2942 (-0.0308) | 0.5888 (+0.0882) | 0.4882 (+0.0329) |
| 2.1495 | 133000 | 0.1349 | 0.2781 | 0.6183 (+0.0779) | 0.3143 (-0.0108) | 0.6174 (+0.1167) | 0.5166 (+0.0613) |
| 2.1657 | 134000 | 0.1353 | 0.2813 | 0.5824 (+0.0419) | 0.2992 (-0.0259) | 0.6121 (+0.1114) | 0.4979 (+0.0425) |
| 2.1818 | 135000 | 0.1393 | 0.2697 | 0.5742 (+0.0337) | 0.2872 (-0.0378) | 0.6198 (+0.1192) | 0.4937 (+0.0384) |
| 2.1980 | 136000 | 0.1358 | 0.2652 | 0.5871 (+0.0466) | 0.2904 (-0.0346) | 0.5772 (+0.0765) | 0.4849 (+0.0295) |
| 2.2141 | 137000 | 0.1344 | 0.2832 | 0.5790 (+0.0385) | 0.2886 (-0.0365) | 0.5628 (+0.0622) | 0.4768 (+0.0214) |
| 2.2303 | 138000 | 0.1381 | 0.3081 | 0.5981 (+0.0577) | 0.3093 (-0.0157) | 0.6085 (+0.1078) | 0.5053 (+0.0499) |
| 2.2465 | 139000 | 0.1435 | 0.2777 | 0.6116 (+0.0712) | 0.2936 (-0.0314) | 0.5767 (+0.0761) | 0.4940 (+0.0386) |
| 2.2626 | 140000 | 0.1298 | 0.3054 | 0.5784 (+0.0380) | 0.3057 (-0.0193) | 0.5560 (+0.0553) | 0.4801 (+0.0247) |
| 2.2788 | 141000 | 0.1315 | 0.2758 | 0.5764 (+0.0360) | 0.3106 (-0.0144) | 0.5835 (+0.0829) | 0.4902 (+0.0348) |
| 2.2949 | 142000 | 0.134 | 0.2992 | 0.5487 (+0.0083) | 0.2944 (-0.0307) | 0.5572 (+0.0566) | 0.4668 (+0.0114) |
| 2.3111 | 143000 | 0.15 | 0.2720 | 0.5721 (+0.0316) | 0.3137 (-0.0113) | 0.5728 (+0.0721) | 0.4862 (+0.0308) |
| 2.3273 | 144000 | 0.1354 | 0.2829 | 0.5791 (+0.0387) | 0.2974 (-0.0276) | 0.5915 (+0.0909) | 0.4894 (+0.0340) |
| 2.3434 | 145000 | 0.1272 | 0.2927 | 0.5753 (+0.0349) | 0.3033 (-0.0218) | 0.5872 (+0.0866) | 0.4886 (+0.0332) |
| 2.3596 | 146000 | 0.1338 | 0.2961 | 0.5794 (+0.0389) | 0.2933 (-0.0318) | 0.5739 (+0.0733) | 0.4822 (+0.0268) |
| 2.3758 | 147000 | 0.1387 | 0.3044 | 0.5813 (+0.0409) | 0.3085 (-0.0165) | 0.5873 (+0.0867) | 0.4924 (+0.0370) |
| 2.3919 | 148000 | 0.1406 | 0.2855 | 0.5816 (+0.0412) | 0.3095 (-0.0156) | 0.5665 (+0.0658) | 0.4859 (+0.0305) |
| 2.4081 | 149000 | 0.1229 | 0.2821 | 0.5972 (+0.0568) | 0.3052 (-0.0199) | 0.5942 (+0.0936) | 0.4989 (+0.0435) |
| 2.4242 | 150000 | 0.1268 | 0.2976 | 0.6010 (+0.0605) | 0.3117 (-0.0134) | 0.5665 (+0.0658) | 0.4930 (+0.0377) |
| 2.4404 | 151000 | 0.1261 | 0.3029 | 0.5922 (+0.0518) | 0.2956 (-0.0295) | 0.5407 (+0.0401) | 0.4762 (+0.0208) |
| 2.4566 | 152000 | 0.14 | 0.2785 | 0.5712 (+0.0308) | 0.3156 (-0.0094) | 0.5456 (+0.0450) | 0.4775 (+0.0221) |
| 2.4727 | 153000 | 0.1356 | 0.2922 | 0.5613 (+0.0209) | 0.3257 (+0.0007) | 0.5472 (+0.0465) | 0.4781 (+0.0227) |
| 2.4889 | 154000 | 0.1447 | 0.2794 | 0.5772 (+0.0367) | 0.3222 (-0.0028) | 0.5601 (+0.0595) | 0.4865 (+0.0311) |
| 2.5051 | 155000 | 0.1301 | 0.2889 | 0.5896 (+0.0491) | 0.3132 (-0.0119) | 0.5609 (+0.0603) | 0.4879 (+0.0325) |
| 2.5212 | 156000 | 0.1227 | 0.2884 | 0.5784 (+0.0380) | 0.2961 (-0.0289) | 0.5469 (+0.0462) | 0.4738 (+0.0185) |
| 2.5374 | 157000 | 0.1456 | 0.2811 | 0.5837 (+0.0433) | 0.3226 (-0.0024) | 0.5322 (+0.0315) | 0.4795 (+0.0241) |
| 2.5535 | 158000 | 0.1267 | 0.2814 | 0.5618 (+0.0214) | 0.2990 (-0.0261) | 0.5391 (+0.0384) | 0.4666 (+0.0113) |
| 2.5697 | 159000 | 0.1384 | 0.2766 | 0.5157 (-0.0247) | 0.2953 (-0.0297) | 0.5655 (+0.0648) | 0.4588 (+0.0035) |
| 2.5859 | 160000 | 0.1376 | 0.2551 | 0.5692 (+0.0288) | 0.3165 (-0.0086) | 0.5702 (+0.0695) | 0.4853 (+0.0299) |
| 2.6020 | 161000 | 0.135 | 0.2806 | 0.5441 (+0.0037) | 0.3067 (-0.0183) | 0.5562 (+0.0555) | 0.4690 (+0.0136) |
| 2.6182 | 162000 | 0.1238 | 0.2837 | 0.5706 (+0.0302) | 0.3354 (+0.0103) | 0.5629 (+0.0623) | 0.4896 (+0.0343) |
| 2.6343 | 163000 | 0.1415 | 0.2692 | 0.5609 (+0.0205) | 0.3097 (-0.0153) | 0.5377 (+0.0371) | 0.4695 (+0.0141) |
| 2.6505 | 164000 | 0.1263 | 0.2765 | 0.5712 (+0.0308) | 0.3281 (+0.0030) | 0.5770 (+0.0764) | 0.4921 (+0.0367) |
| 2.6667 | 165000 | 0.1324 | 0.2749 | 0.6011 (+0.0607) | 0.3207 (-0.0043) | 0.5744 (+0.0737) | 0.4987 (+0.0434) |
| 2.6828 | 166000 | 0.1423 | 0.2678 | 0.6125 (+0.0721) | 0.3053 (-0.0197) | 0.5662 (+0.0656) | 0.4947 (+0.0393) |
| 2.6990 | 167000 | 0.1423 | 0.2559 | 0.5863 (+0.0459) | 0.3002 (-0.0249) | 0.5810 (+0.0803) | 0.4892 (+0.0338) |
| 2.7152 | 168000 | 0.1346 | 0.2770 | 0.5778 (+0.0374) | 0.2766 (-0.0484) | 0.5617 (+0.0610) | 0.4720 (+0.0166) |
| 2.7313 | 169000 | 0.1325 | 0.2672 | 0.6102 (+0.0698) | 0.3027 (-0.0223) | 0.5584 (+0.0578) | 0.4905 (+0.0351) |
| 2.7475 | 170000 | 0.1326 | 0.2758 | 0.5907 (+0.0502) | 0.2944 (-0.0306) | 0.5679 (+0.0673) | 0.4843 (+0.0290) |
| 2.7636 | 171000 | 0.1294 | 0.2883 | 0.5948 (+0.0543) | 0.2997 (-0.0253) | 0.5692 (+0.0685) | 0.4879 (+0.0325) |
| 2.7798 | 172000 | 0.1324 | 0.2726 | 0.5822 (+0.0418) | 0.3114 (-0.0136) | 0.5872 (+0.0865) | 0.4936 (+0.0382) |
| 2.7960 | 173000 | 0.1277 | 0.2952 | 0.5982 (+0.0578) | 0.3125 (-0.0126) | 0.5706 (+0.0699) | 0.4937 (+0.0384) |
| 2.8121 | 174000 | 0.141 | 0.2667 | 0.5414 (+0.0010) | 0.3050 (-0.0201) | 0.5682 (+0.0676) | 0.4715 (+0.0162) |
| 2.8283 | 175000 | 0.1333 | 0.2919 | 0.5904 (+0.0500) | 0.3201 (-0.0049) | 0.5575 (+0.0569) | 0.4893 (+0.0340) |
| 2.8444 | 176000 | 0.1404 | 0.2595 | 0.5767 (+0.0362) | 0.3267 (+0.0016) | 0.5602 (+0.0596) | 0.4878 (+0.0325) |
| 2.8606 | 177000 | 0.1336 | 0.2627 | 0.5864 (+0.0460) | 0.3270 (+0.0020) | 0.5723 (+0.0716) | 0.4952 (+0.0399) |
| 2.8768 | 178000 | 0.1332 | 0.2693 | 0.5712 (+0.0308) | 0.3232 (-0.0018) | 0.5559 (+0.0553) | 0.4834 (+0.0281) |
| 2.8929 | 179000 | 0.1312 | 0.2787 | 0.5789 (+0.0384) | 0.3174 (-0.0076) | 0.5793 (+0.0787) | 0.4919 (+0.0365) |
| 2.9091 | 180000 | 0.1334 | 0.2802 | 0.5858 (+0.0454) | 0.3225 (-0.0025) | 0.5590 (+0.0584) | 0.4891 (+0.0337) |
| 2.9253 | 181000 | 0.1355 | 0.2633 | 0.5710 (+0.0306) | 0.3228 (-0.0023) | 0.5589 (+0.0583) | 0.4842 (+0.0289) |
| 2.9414 | 182000 | 0.1316 | 0.2558 | 0.5826 (+0.0422) | 0.3148 (-0.0103) | 0.5822 (+0.0815) | 0.4932 (+0.0378) |
| 2.9576 | 183000 | 0.127 | 0.2664 | 0.5810 (+0.0406) | 0.3292 (+0.0042) | 0.5818 (+0.0811) | 0.4973 (+0.0419) |
| 2.9737 | 184000 | 0.1263 | 0.2644 | 0.5628 (+0.0224) | 0.3188 (-0.0062) | 0.5828 (+0.0821) | 0.4881 (+0.0328) |
| 2.9899 | 185000 | 0.1249 | 0.2677 | 0.5822 (+0.0417) | 0.3205 (-0.0045) | 0.5944 (+0.0937) | 0.4990 (+0.0436) |
| 3.0061 | 186000 | 0.1201 | 0.2773 | 0.5477 (+0.0073) | 0.3231 (-0.0019) | 0.5501 (+0.0495) | 0.4737 (+0.0183) |
| 3.0222 | 187000 | 0.0894 | 0.3084 | 0.5308 (-0.0096) | 0.3063 (-0.0188) | 0.5241 (+0.0235) | 0.4537 (-0.0016) |
| 3.0384 | 188000 | 0.0882 | 0.3015 | 0.5399 (-0.0005) | 0.3187 (-0.0063) | 0.5277 (+0.0271) | 0.4621 (+0.0067) |
| 3.0545 | 189000 | 0.0905 | 0.2996 | 0.5312 (-0.0092) | 0.3222 (-0.0028) | 0.5122 (+0.0116) | 0.4552 (-0.0001) |
| 3.0707 | 190000 | 0.0876 | 0.3274 | 0.5587 (+0.0183) | 0.3288 (+0.0037) | 0.5245 (+0.0238) | 0.4707 (+0.0153) |
| 3.0869 | 191000 | 0.0939 | 0.3178 | 0.5134 (-0.0270) | 0.3153 (-0.0098) | 0.5361 (+0.0354) | 0.4549 (-0.0005) |
| 3.1030 | 192000 | 0.0827 | 0.3202 | 0.5354 (-0.0050) | 0.3181 (-0.0069) | 0.5403 (+0.0396) | 0.4646 (+0.0092) |
| 3.1192 | 193000 | 0.0849 | 0.3090 | 0.5108 (-0.0296) | 0.3074 (-0.0177) | 0.5307 (+0.0300) | 0.4496 (-0.0058) |
| 3.1354 | 194000 | 0.0793 | 0.3166 | 0.5744 (+0.0339) | 0.2947 (-0.0303) | 0.5409 (+0.0402) | 0.4700 (+0.0146) |
| 3.1515 | 195000 | 0.0948 | 0.3167 | 0.5533 (+0.0129) | 0.3095 (-0.0156) | 0.5299 (+0.0293) | 0.4642 (+0.0089) |
| 3.1677 | 196000 | 0.0862 | 0.3205 | 0.5398 (-0.0007) | 0.3268 (+0.0018) | 0.5316 (+0.0310) | 0.4661 (+0.0107) |
| 3.1838 | 197000 | 0.0796 | 0.3461 | 0.5088 (-0.0316) | 0.3223 (-0.0027) | 0.5168 (+0.0162) | 0.4493 (-0.0061) |
| 3.2 | 198000 | 0.0859 | 0.3405 | 0.5260 (-0.0145) | 0.3212 (-0.0038) | 0.5128 (+0.0121) | 0.4533 (-0.0020) |
| 3.2162 | 199000 | 0.0931 | 0.3190 | 0.5334 (-0.0070) | 0.3172 (-0.0079) | 0.5014 (+0.0007) | 0.4507 (-0.0047) |
| 3.2323 | 200000 | 0.0841 | 0.3424 | 0.4810 (-0.0594) | 0.3052 (-0.0198) | 0.5032 (+0.0025) | 0.4298 (-0.0256) |
| 3.2485 | 201000 | 0.0833 | 0.3342 | 0.5190 (-0.0215) | 0.3027 (-0.0223) | 0.5219 (+0.0213) | 0.4479 (-0.0075) |
| 3.2646 | 202000 | 0.0884 | 0.3203 | 0.5242 (-0.0163) | 0.3077 (-0.0173) | 0.5191 (+0.0185) | 0.4503 (-0.0050) |
| 3.2808 | 203000 | 0.0854 | 0.3206 | 0.5158 (-0.0247) | 0.3060 (-0.0190) | 0.5173 (+0.0166) | 0.4464 (-0.0090) |
| 3.2970 | 204000 | 0.0859 | 0.3242 | 0.5242 (-0.0163) | 0.3189 (-0.0062) | 0.5198 (+0.0191) | 0.4543 (-0.0011) |
| 3.3131 | 205000 | 0.0792 | 0.3199 | 0.5466 (+0.0062) | 0.3244 (-0.0007) | 0.5304 (+0.0297) | 0.4671 (+0.0118) |
| 3.3293 | 206000 | 0.0807 | 0.3319 | 0.5147 (-0.0257) | 0.3065 (-0.0185) | 0.5222 (+0.0216) | 0.4478 (-0.0076) |
| 3.3455 | 207000 | 0.093 | 0.3156 | 0.5335 (-0.0070) | 0.3238 (-0.0012) | 0.5571 (+0.0565) | 0.4715 (+0.0161) |
| 3.3616 | 208000 | 0.0863 | 0.3112 | 0.5509 (+0.0105) | 0.3298 (+0.0047) | 0.5360 (+0.0353) | 0.4722 (+0.0168) |
| 3.3778 | 209000 | 0.09 | 0.3119 | 0.5378 (-0.0026) | 0.3214 (-0.0036) | 0.5683 (+0.0676) | 0.4758 (+0.0205) |
| 3.3939 | 210000 | 0.0825 | 0.3204 | 0.5283 (-0.0121) | 0.3320 (+0.0069) | 0.5684 (+0.0678) | 0.4762 (+0.0209) |
| 3.4101 | 211000 | 0.0892 | 0.3258 | 0.5251 (-0.0153) | 0.3241 (-0.0010) | 0.5902 (+0.0896) | 0.4798 (+0.0244) |
| 3.4263 | 212000 | 0.0859 | 0.3206 | 0.5333 (-0.0071) | 0.3317 (+0.0067) | 0.5668 (+0.0662) | 0.4773 (+0.0219) |
| 3.4424 | 213000 | 0.0878 | 0.3257 | 0.5274 (-0.0131) | 0.3291 (+0.0041) | 0.5588 (+0.0582) | 0.4718 (+0.0164) |
| 3.4586 | 214000 | 0.0808 | 0.3211 | 0.5236 (-0.0168) | 0.3292 (+0.0042) | 0.5526 (+0.0519) | 0.4685 (+0.0131) |
| 3.4747 | 215000 | 0.0835 | 0.3229 | 0.5421 (+0.0017) | 0.3196 (-0.0054) | 0.5881 (+0.0875) | 0.4833 (+0.0279) |
| 3.4909 | 216000 | 0.0868 | 0.3234 | 0.5167 (-0.0238) | 0.3201 (-0.0050) | 0.5500 (+0.0494) | 0.4623 (+0.0069) |
| 3.5071 | 217000 | 0.089 | 0.3203 | 0.4906 (-0.0498) | 0.3113 (-0.0137) | 0.5616 (+0.0610) | 0.4545 (-0.0009) |
| 3.5232 | 218000 | 0.0924 | 0.3159 | 0.4943 (-0.0462) | 0.3161 (-0.0089) | 0.5527 (+0.0521) | 0.4544 (-0.0010) |
| 3.5394 | 219000 | 0.0842 | 0.3210 | 0.4828 (-0.0576) | 0.3244 (-0.0007) | 0.5631 (+0.0625) | 0.4568 (+0.0014) |
| 3.5556 | 220000 | 0.0949 | 0.3237 | 0.4744 (-0.0661) | 0.3305 (+0.0054) | 0.5512 (+0.0506) | 0.4520 (-0.0034) |
| 3.5717 | 221000 | 0.0868 | 0.3301 | 0.4696 (-0.0708) | 0.3246 (-0.0004) | 0.5772 (+0.0765) | 0.4571 (+0.0018) |
| 3.5879 | 222000 | 0.0916 | 0.3169 | 0.4640 (-0.0765) | 0.3198 (-0.0052) | 0.5576 (+0.0569) | 0.4471 (-0.0082) |
| 3.6040 | 223000 | 0.0777 | 0.3233 | 0.4836 (-0.0568) | 0.3176 (-0.0075) | 0.5704 (+0.0698) | 0.4572 (+0.0018) |
| 3.6202 | 224000 | 0.0835 | 0.3241 | 0.4951 (-0.0454) | 0.3154 (-0.0097) | 0.5418 (+0.0412) | 0.4507 (-0.0046) |
| 3.6364 | 225000 | 0.0847 | 0.3132 | 0.5080 (-0.0324) | 0.3166 (-0.0084) | 0.5148 (+0.0141) | 0.4465 (-0.0089) |
| 3.6525 | 226000 | 0.0926 | 0.3103 | 0.5045 (-0.0359) | 0.3038 (-0.0213) | 0.5156 (+0.0150) | 0.4413 (-0.0141) |
| 3.6687 | 227000 | 0.0872 | 0.3166 | 0.5252 (-0.0152) | 0.3148 (-0.0103) | 0.5197 (+0.0191) | 0.4532 (-0.0021) |
| 3.6848 | 228000 | 0.0886 | 0.3052 | 0.5165 (-0.0239) | 0.3175 (-0.0076) | 0.5331 (+0.0324) | 0.4557 (+0.0003) |
| 3.7010 | 229000 | 0.083 | 0.3027 | 0.5035 (-0.0369) | 0.3152 (-0.0098) | 0.5355 (+0.0348) | 0.4514 (-0.0040) |
| 3.7172 | 230000 | 0.0895 | 0.3073 | 0.4985 (-0.0419) | 0.3188 (-0.0062) | 0.5595 (+0.0589) | 0.4589 (+0.0036) |
| 3.7333 | 231000 | 0.0811 | 0.3080 | 0.4988 (-0.0416) | 0.3174 (-0.0077) | 0.5379 (+0.0373) | 0.4514 (-0.0040) |
| 3.7495 | 232000 | 0.0864 | 0.3043 | 0.4941 (-0.0463) | 0.3128 (-0.0123) | 0.5237 (+0.0230) | 0.4435 (-0.0119) |
| 3.7657 | 233000 | 0.0843 | 0.3153 | 0.4882 (-0.0522) | 0.3208 (-0.0043) | 0.5363 (+0.0356) | 0.4484 (-0.0070) |
| 3.7818 | 234000 | 0.0799 | 0.3184 | 0.5038 (-0.0366) | 0.3251 (+0.0000) | 0.5385 (+0.0379) | 0.4558 (+0.0004) |
| 3.7980 | 235000 | 0.0928 | 0.3122 | 0.4960 (-0.0444) | 0.3238 (-0.0013) | 0.5420 (+0.0413) | 0.4539 (-0.0014) |
| 3.8141 | 236000 | 0.0839 | 0.3112 | 0.4922 (-0.0482) | 0.3237 (-0.0014) | 0.5428 (+0.0422) | 0.4529 (-0.0025) |
| 3.8303 | 237000 | 0.0935 | 0.3060 | 0.4979 (-0.0426) | 0.3231 (-0.0020) | 0.5460 (+0.0454) | 0.4556 (+0.0003) |
| 3.8465 | 238000 | 0.0836 | 0.3101 | 0.4940 (-0.0464) | 0.3270 (+0.0020) | 0.5564 (+0.0558) | 0.4592 (+0.0038) |
| 3.8626 | 239000 | 0.0843 | 0.3151 | 0.4935 (-0.0469) | 0.3238 (-0.0012) | 0.5671 (+0.0664) | 0.4615 (+0.0061) |
| 3.8788 | 240000 | 0.0902 | 0.3118 | 0.5045 (-0.0359) | 0.3238 (-0.0012) | 0.5640 (+0.0634) | 0.4641 (+0.0088) |
| 3.8949 | 241000 | 0.0778 | 0.3151 | 0.4964 (-0.0440) | 0.3235 (-0.0015) | 0.5551 (+0.0544) | 0.4583 (+0.0030) |
| 3.9111 | 242000 | 0.0907 | 0.3097 | 0.4915 (-0.0489) | 0.3208 (-0.0043) | 0.5656 (+0.0650) | 0.4593 (+0.0039) |
| 3.9273 | 243000 | 0.0794 | 0.3191 | 0.4831 (-0.0573) | 0.3213 (-0.0038) | 0.5608 (+0.0602) | 0.4551 (-0.0003) |
| 3.9434 | 244000 | 0.0791 | 0.3155 | 0.4972 (-0.0432) | 0.3235 (-0.0015) | 0.5604 (+0.0597) | 0.4604 (+0.0050) |
| 3.9596 | 245000 | 0.0852 | 0.3161 | 0.4801 (-0.0603) | 0.3222 (-0.0028) | 0.5619 (+0.0612) | 0.4547 (-0.0006) |
| 3.9758 | 246000 | 0.094 | 0.3100 | 0.4905 (-0.0499) | 0.3259 (+0.0008) | 0.5688 (+0.0682) | 0.4617 (+0.0064) |
| 3.9919 | 247000 | 0.0756 | 0.3123 | 0.4814 (-0.0590) | 0.3238 (-0.0012) | 0.5674 (+0.0668) | 0.4575 (+0.0022) |
| -1 | -1 | - | - | 0.6427 (+0.1023) | 0.3340 (+0.0089) | 0.6215 (+0.1208) | 0.5327 (+0.0773) |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.0.0
- Transformers: 4.56.0.dev0
- PyTorch: 2.7.1+cu126
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |