raj79 commited on
Commit
2251aaf
·
verified ·
1 Parent(s): a26c2e4

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 240.07 +/- 46.24
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f488c73e170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f488c73e200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f488c73e290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f488c73e320>", "_build": "<function ActorCriticPolicy._build at 0x7f488c73e3b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f488c73e440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f488c73e4d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f488c73e560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f488c73e5f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f488c73e680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f488c73e710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f488c73e7a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f488c744100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716716498219779311, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoZcjxcUy66rhS5unN9ubXa6fM53a3UOQAAgD8AAIA/ZoJbPHtc8DnWiFg6KaT5NVQebrhgtYK5AACAPwAAgD9mRhq8rvmkunhZK7sW6ao3IdoSOqOL2zkAAIA/AACAP83NiryFQ++5tb7CuklhNrUSKIS65gPkOQAAgD8AAIA/M19rvLrnFD69oqk9MO5/vmD8OTyYc187AAAAAAAAAABmpIy9e86eutb5JrrrnRG1YorKusuQQDkAAIA/AACAP808e71ck1q6La/SOzZnXjbO2FU65ntZNQAAgD8AAIA/Zs5hvcNFQbrD7Na6HkgHtawjDrt76PQ5AACAPwAAgD+zxRM92HPaPq6TmL3ajVu+FkBdugUOZD0AAAAAAAAAAOYJJ71cU3m6UvlcOJydPjN05Nq6iTuBtwAAgD8AAIA/OpNvPqaKkz9cwAw+x8l/viCbhj6OgkK9AAAAAAAAAAAABgq9KfAFulFjnDkdXbu1tdYPuEjXuLgAAIA/AACAP2bmcLpIH6e6uL1uu/IdZThG2Jw6OoXEOAAAgD8AAIA/s1NFvR9Np7lmBMM7qp03OGuAE7r0SZK6AACAPwAAgD+aZ5I8E+fpPg1BCr3FLEe+E6yDPZNUqLwAAAAAAAAAAGZ2HzwUlI66uIvGuk29srVfND86M3LmOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWKtCiRGMKMAWyUTegDjAF0lEdAmeyk3juKGnV9lChoBkdAYzea/ATIvWgHTegDaAhHQJnzRYfW+XZ1fZQoaAZHQGCUlq8DjipoB03oA2gIR0CZ9EMRYigTdX2UKGgGR0BnEk/D+BH1aAdN6ANoCEdAmfit4eLeh3V9lChoBkdAZBR0IToMa2gHTegDaAhHQJn/3jlxOtZ1fZQoaAZHQGY/F4keIVNoB03oA2gIR0CaAbIoVmBfdX2UKGgGR0BlyYs9SuQqaAdN6ANoCEdAmggnRgJC0HV9lChoBkdAYuAe9SMtLGgHTegDaAhHQJoQjS4OMER1fZQoaAZHQGLFRNyo4uNoB03oA2gIR0CaEdA1ejVQdX2UKGgGR0BhxLmSyMUAaAdN6ANoCEdAmhOyOearm3V9lChoBkdAYYjhWHUMHGgHTegDaAhHQJoqM/3WWhR1fZQoaAZHQGQk/MW43FVoB03oA2gIR0CaLvGd7OVxdX2UKGgGR0Bfki704BFNaAdN6ANoCEdAmjVkka/ATXV9lChoBkdAYJw6bONYKmgHTegDaAhHQJo4vLIPsiV1fZQoaAZHQGJNkNvwVj9oB03oA2gIR0CaP4ASnLq2dX2UKGgGR0BhVNocrAgxaAdN6ANoCEdAmj/iamXPaHV9lChoBkdAY8k9qUNayWgHTegDaAhHQJpDiClJpWV1fZQoaAZHQGR3aq814xFoB03oA2gIR0CaSpi4J/oadX2UKGgGR0Bk3qxkd3jdaAdN6ANoCEdAmkuf8qFyrHV9lChoBkdAZQB3lCCz1WgHTegDaAhHQJpQJsDW9UV1fZQoaAZHQGHzmQSzw+doB03oA2gIR0CaV61kUbkwdX2UKGgGR0BmXNymygPFaAdN6ANoCEdAmllsvqTr3XV9lChoBkdAYiVyfcvdumgHTegDaAhHQJpe17Qb+991fZQoaAZHQGTf16E8JUpoB03oA2gIR0CaZJP/aQFLdX2UKGgGR0Bi8qlchTwVaAdN6ANoCEdAmmXIMvysjnV9lChoBkdAG07wazeGf2gHS+VoCEdAmmc6XnhbW3V9lChoBkdAYQUp0fYBeWgHTegDaAhHQJpnnTBqKxd1fZQoaAZHQGP+EM9bHIZoB03oA2gIR0CagHXCCSRsdX2UKGgGR0BemNkSVW0aaAdN6ANoCEdAmoR9Dc/MXHV9lChoBkdAYys8vmHP/2gHTegDaAhHQJqJ7fP5YYB1fZQoaAZHQDqcvboKUmloB00PAWgIR0CaioRxtHhCdX2UKGgGR0BhQSjvd/KAaAdN6ANoCEdAmoxhXCCSR3V9lChoBkdAYY+Ug0TDfmgHTegDaAhHQJqQZRZU1ht1fZQoaAZHQGWD+wTufEpoB03oA2gIR0CakJ72+PBBdX2UKGgGR0BkcUPatcOcaAdN6ANoCEdAmpLmEoOQQ3V9lChoBkdAMQYZAIIF/2gHS/9oCEdAmph6D5CWvHV9lChoBkdAYZp6rNnoPmgHTegDaAhHQJqY/tiQT251fZQoaAZHQGcN1f/m1Y1oB03oA2gIR0Camd9+gDigdX2UKGgGR0BQT/iHZbpvaAdNCwFoCEdAmprmrjo6jnV9lChoBkdAZ8b0kGA09GgHTegDaAhHQJqdsmmce8x1fZQoaAZHQGQkxn3+MqBoB03oA2gIR0CapdFIuoP1dX2UKGgGR8AX2/0ulGgBaAdL8WgIR0CaqG29L6DXdX2UKGgGR0BdosQZn+Q2aAdN6ANoCEdAmq53OGCZnnV9lChoBkdAYbYJhvze42gHTegDaAhHQJq0Q287IT51fZQoaAZHQFuS6KLsKLNoB03oA2gIR0CatXg7YChfdX2UKGgGR0BmUF10T101aAdN6ANoCEdAmrdRmPHT7XV9lChoBkdAY0lS75Ec82gHTegDaAhHQJrOWitaIN51fZQoaAZHQGEK9cjZ+QVoB03oA2gIR0Ca0vmk30f6dX2UKGgGR0BjKit/4IrwaAdN6ANoCEdAmtqh0yP+43V9lChoBkdAaGQChew9q2gHTegDaAhHQJrjqhN/OMV1fZQoaAZHQGNtn5i3G4toB03oA2gIR0Ca4+3WnTAndX2UKGgGR0Bg3CU5dWyUaAdN6ANoCEdAmuZmOAAhjnV9lChoBkdAZr2fHPu5SWgHTegDaAhHQJrsEz0pVjt1fZQoaAZHQGHnzFVDKHRoB03oA2gIR0Ca7XaXa8HwdX2UKGgGR0Bb+vcrRSgoaAdN6ANoCEdAmu57UXpGF3V9lChoBkdAYxGyNXHR1GgHTegDaAhHQJrxNL26ClJ1fZQoaAZHQEhj7rLQokRoB00pAWgIR0Ca9hD0163RdX2UKGgGR0Biip7VrhzeaAdN6ANoCEdAmvdVG0/nn3V9lChoBkdAYljTAFgUlGgHTegDaAhHQJr5Es3AEdN1fZQoaAZHQGZlMNDtw71oB03oA2gIR0Ca/Z82Jiy6dX2UKGgGR0BlCOC2+fyxaAdN6ANoCEdAmwLNXgccVHV9lChoBkdAZVjx6OYIB2gHTegDaAhHQJsD6Gyon8d1fZQoaAZHQF2cMglnh89oB03oA2gIR0CbBaMZgogFdX2UKGgGR0Bj782LpA2RaAdN6ANoCEdAmwrFschkiHV9lChoBkdAZFaqJdjXnWgHTegDaAhHQJsi2DTSb6R1fZQoaAZHQGEw1fu1F6RoB03oA2gIR0CbKHlC1JDmdX2UKGgGR0BhJNcnmaH9aAdN6ANoCEdAmy/ROpKjBXV9lChoBkdAZZrd0q6OHWgHTegDaAhHQJswFmSQo1F1fZQoaAZHQEJXoXbdrO9oB0v2aAhHQJsxzAtWdVh1fZQoaAZHQGNAa9bor4FoB03oA2gIR0CbONe4kNWmdX2UKGgGR0Bg4eE/SpiraAdN6ANoCEdAmzp2saKk23V9lChoBkdAYVL4Oc2BKGgHTegDaAhHQJs7+bLEDQt1fZQoaAZHQGaPANwzch1oB03oA2gIR0CbQGUnogV5dX2UKGgGR0Bhd+G21D0EaAdN6ANoCEdAm0e2GqPwNXV9lChoBkdAXekdQwblzWgHTegDaAhHQJtJJylvZRN1fZQoaAZHQGQi77sOXmhoB03oA2gIR0CbS0J4jbBXdX2UKGgGR0BkAVsvZh8ZaAdN6ANoCEdAm1CB8pkPMHV9lChoBkdAYw8gkka/AWgHTegDaAhHQJtWf9AHE/B1fZQoaAZHQF8V6DGtITZoB03oA2gIR0CbV8cbzbvgdX2UKGgGR0BhpYUYbbUPaAdN6ANoCEdAm1mx7VrhznV9lChoBkdAcAEQbMottmgHTWoCaAhHQJta2t7rs0J1fZQoaAZHQF6hzZpSJj5oB03oA2gIR0CbXf6hQFcIdX2UKGgGR0BiTh4lhPTHaAdN6ANoCEdAm3vx5xBE8nV9lChoBkdANPk03wTdtWgHS/1oCEdAm30YP5HmR3V9lChoBkdAZZljEvTPSmgHTegDaAhHQJuCVfKISDh1fZQoaAZHQF4lx2St/4JoB03oA2gIR0CbgpJo0ygxdX2UKGgGR0BhBRuQ6p5vaAdN6ANoCEdAm4oF0xM363V9lChoBkdAZBeNp/PPcGgHTegDaAhHQJuLXAP/aQF1fZQoaAZHQF47rH2h7E5oB03oA2gIR0CbjEwaR6njdX2UKGgGR0BjqAREnb7CaAdN6ANoCEdAm47vc8DB/XV9lChoBkdAS9jR+jM3ZWgHS/doCEdAm47/exfOU3V9lChoBkdAZPqQvHtF8WgHTegDaAhHQJuTL0btJFt1fZQoaAZHQF7yCMglnh9oB03oA2gIR0CblDa5wwTNdX2UKGgGR0BkVUyrPt2LaAdN6ANoCEdAm5Wp0KZ2IXV9lChoBkdAZIGULUkOZ2gHTegDaAhHQJuZsXSBshx1fZQoaAZHQDQv+yZ8a4toB0v+aAhHQJuaqzv7WNF1fZQoaAZHQGGfBQ3xWktoB03oA2gIR0Cbnl4etCAudX2UKGgGR0BhcFU2kzoEaAdN6ANoCEdAm59homG/OHV9lChoBkdAZstvv0AcUGgHTegDaAhHQJug6skpqh11fZQoaAZHQGbgE0rK/21oB03oA2gIR0CbpoTQVsUJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:836709441c10e4f41a2efb6a0aab5323256c9e7cd3671a051a5a008ebb8b7c31
3
+ size 148076
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f488c73e170>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f488c73e200>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f488c73e290>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f488c73e320>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f488c73e3b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f488c73e440>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f488c73e4d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f488c73e560>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f488c73e5f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f488c73e680>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f488c73e710>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f488c73e7a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f488c744100>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1716716498219779311,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoZcjxcUy66rhS5unN9ubXa6fM53a3UOQAAgD8AAIA/ZoJbPHtc8DnWiFg6KaT5NVQebrhgtYK5AACAPwAAgD9mRhq8rvmkunhZK7sW6ao3IdoSOqOL2zkAAIA/AACAP83NiryFQ++5tb7CuklhNrUSKIS65gPkOQAAgD8AAIA/M19rvLrnFD69oqk9MO5/vmD8OTyYc187AAAAAAAAAABmpIy9e86eutb5JrrrnRG1YorKusuQQDkAAIA/AACAP808e71ck1q6La/SOzZnXjbO2FU65ntZNQAAgD8AAIA/Zs5hvcNFQbrD7Na6HkgHtawjDrt76PQ5AACAPwAAgD+zxRM92HPaPq6TmL3ajVu+FkBdugUOZD0AAAAAAAAAAOYJJ71cU3m6UvlcOJydPjN05Nq6iTuBtwAAgD8AAIA/OpNvPqaKkz9cwAw+x8l/viCbhj6OgkK9AAAAAAAAAAAABgq9KfAFulFjnDkdXbu1tdYPuEjXuLgAAIA/AACAP2bmcLpIH6e6uL1uu/IdZThG2Jw6OoXEOAAAgD8AAIA/s1NFvR9Np7lmBMM7qp03OGuAE7r0SZK6AACAPwAAgD+aZ5I8E+fpPg1BCr3FLEe+E6yDPZNUqLwAAAAAAAAAAGZ2HzwUlI66uIvGuk29srVfND86M3LmOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWKtCiRGMKMAWyUTegDjAF0lEdAmeyk3juKGnV9lChoBkdAYzea/ATIvWgHTegDaAhHQJnzRYfW+XZ1fZQoaAZHQGCUlq8DjipoB03oA2gIR0CZ9EMRYigTdX2UKGgGR0BnEk/D+BH1aAdN6ANoCEdAmfit4eLeh3V9lChoBkdAZBR0IToMa2gHTegDaAhHQJn/3jlxOtZ1fZQoaAZHQGY/F4keIVNoB03oA2gIR0CaAbIoVmBfdX2UKGgGR0BlyYs9SuQqaAdN6ANoCEdAmggnRgJC0HV9lChoBkdAYuAe9SMtLGgHTegDaAhHQJoQjS4OMER1fZQoaAZHQGLFRNyo4uNoB03oA2gIR0CaEdA1ejVQdX2UKGgGR0BhxLmSyMUAaAdN6ANoCEdAmhOyOearm3V9lChoBkdAYYjhWHUMHGgHTegDaAhHQJoqM/3WWhR1fZQoaAZHQGQk/MW43FVoB03oA2gIR0CaLvGd7OVxdX2UKGgGR0Bfki704BFNaAdN6ANoCEdAmjVkka/ATXV9lChoBkdAYJw6bONYKmgHTegDaAhHQJo4vLIPsiV1fZQoaAZHQGJNkNvwVj9oB03oA2gIR0CaP4ASnLq2dX2UKGgGR0BhVNocrAgxaAdN6ANoCEdAmj/iamXPaHV9lChoBkdAY8k9qUNayWgHTegDaAhHQJpDiClJpWV1fZQoaAZHQGR3aq814xFoB03oA2gIR0CaSpi4J/oadX2UKGgGR0Bk3qxkd3jdaAdN6ANoCEdAmkuf8qFyrHV9lChoBkdAZQB3lCCz1WgHTegDaAhHQJpQJsDW9UV1fZQoaAZHQGHzmQSzw+doB03oA2gIR0CaV61kUbkwdX2UKGgGR0BmXNymygPFaAdN6ANoCEdAmllsvqTr3XV9lChoBkdAYiVyfcvdumgHTegDaAhHQJpe17Qb+991fZQoaAZHQGTf16E8JUpoB03oA2gIR0CaZJP/aQFLdX2UKGgGR0Bi8qlchTwVaAdN6ANoCEdAmmXIMvysjnV9lChoBkdAG07wazeGf2gHS+VoCEdAmmc6XnhbW3V9lChoBkdAYQUp0fYBeWgHTegDaAhHQJpnnTBqKxd1fZQoaAZHQGP+EM9bHIZoB03oA2gIR0CagHXCCSRsdX2UKGgGR0BemNkSVW0aaAdN6ANoCEdAmoR9Dc/MXHV9lChoBkdAYys8vmHP/2gHTegDaAhHQJqJ7fP5YYB1fZQoaAZHQDqcvboKUmloB00PAWgIR0CaioRxtHhCdX2UKGgGR0BhQSjvd/KAaAdN6ANoCEdAmoxhXCCSR3V9lChoBkdAYY+Ug0TDfmgHTegDaAhHQJqQZRZU1ht1fZQoaAZHQGWD+wTufEpoB03oA2gIR0CakJ72+PBBdX2UKGgGR0BkcUPatcOcaAdN6ANoCEdAmpLmEoOQQ3V9lChoBkdAMQYZAIIF/2gHS/9oCEdAmph6D5CWvHV9lChoBkdAYZp6rNnoPmgHTegDaAhHQJqY/tiQT251fZQoaAZHQGcN1f/m1Y1oB03oA2gIR0Camd9+gDigdX2UKGgGR0BQT/iHZbpvaAdNCwFoCEdAmprmrjo6jnV9lChoBkdAZ8b0kGA09GgHTegDaAhHQJqdsmmce8x1fZQoaAZHQGQkxn3+MqBoB03oA2gIR0CapdFIuoP1dX2UKGgGR8AX2/0ulGgBaAdL8WgIR0CaqG29L6DXdX2UKGgGR0BdosQZn+Q2aAdN6ANoCEdAmq53OGCZnnV9lChoBkdAYbYJhvze42gHTegDaAhHQJq0Q287IT51fZQoaAZHQFuS6KLsKLNoB03oA2gIR0CatXg7YChfdX2UKGgGR0BmUF10T101aAdN6ANoCEdAmrdRmPHT7XV9lChoBkdAY0lS75Ec82gHTegDaAhHQJrOWitaIN51fZQoaAZHQGEK9cjZ+QVoB03oA2gIR0Ca0vmk30f6dX2UKGgGR0BjKit/4IrwaAdN6ANoCEdAmtqh0yP+43V9lChoBkdAaGQChew9q2gHTegDaAhHQJrjqhN/OMV1fZQoaAZHQGNtn5i3G4toB03oA2gIR0Ca4+3WnTAndX2UKGgGR0Bg3CU5dWyUaAdN6ANoCEdAmuZmOAAhjnV9lChoBkdAZr2fHPu5SWgHTegDaAhHQJrsEz0pVjt1fZQoaAZHQGHnzFVDKHRoB03oA2gIR0Ca7XaXa8HwdX2UKGgGR0Bb+vcrRSgoaAdN6ANoCEdAmu57UXpGF3V9lChoBkdAYxGyNXHR1GgHTegDaAhHQJrxNL26ClJ1fZQoaAZHQEhj7rLQokRoB00pAWgIR0Ca9hD0163RdX2UKGgGR0Biip7VrhzeaAdN6ANoCEdAmvdVG0/nn3V9lChoBkdAYljTAFgUlGgHTegDaAhHQJr5Es3AEdN1fZQoaAZHQGZlMNDtw71oB03oA2gIR0Ca/Z82Jiy6dX2UKGgGR0BlCOC2+fyxaAdN6ANoCEdAmwLNXgccVHV9lChoBkdAZVjx6OYIB2gHTegDaAhHQJsD6Gyon8d1fZQoaAZHQF2cMglnh89oB03oA2gIR0CbBaMZgogFdX2UKGgGR0Bj782LpA2RaAdN6ANoCEdAmwrFschkiHV9lChoBkdAZFaqJdjXnWgHTegDaAhHQJsi2DTSb6R1fZQoaAZHQGEw1fu1F6RoB03oA2gIR0CbKHlC1JDmdX2UKGgGR0BhJNcnmaH9aAdN6ANoCEdAmy/ROpKjBXV9lChoBkdAZZrd0q6OHWgHTegDaAhHQJswFmSQo1F1fZQoaAZHQEJXoXbdrO9oB0v2aAhHQJsxzAtWdVh1fZQoaAZHQGNAa9bor4FoB03oA2gIR0CbONe4kNWmdX2UKGgGR0Bg4eE/SpiraAdN6ANoCEdAmzp2saKk23V9lChoBkdAYVL4Oc2BKGgHTegDaAhHQJs7+bLEDQt1fZQoaAZHQGaPANwzch1oB03oA2gIR0CbQGUnogV5dX2UKGgGR0Bhd+G21D0EaAdN6ANoCEdAm0e2GqPwNXV9lChoBkdAXekdQwblzWgHTegDaAhHQJtJJylvZRN1fZQoaAZHQGQi77sOXmhoB03oA2gIR0CbS0J4jbBXdX2UKGgGR0BkAVsvZh8ZaAdN6ANoCEdAm1CB8pkPMHV9lChoBkdAYw8gkka/AWgHTegDaAhHQJtWf9AHE/B1fZQoaAZHQF8V6DGtITZoB03oA2gIR0CbV8cbzbvgdX2UKGgGR0BhpYUYbbUPaAdN6ANoCEdAm1mx7VrhznV9lChoBkdAcAEQbMottmgHTWoCaAhHQJta2t7rs0J1fZQoaAZHQF6hzZpSJj5oB03oA2gIR0CbXf6hQFcIdX2UKGgGR0BiTh4lhPTHaAdN6ANoCEdAm3vx5xBE8nV9lChoBkdANPk03wTdtWgHS/1oCEdAm30YP5HmR3V9lChoBkdAZZljEvTPSmgHTegDaAhHQJuCVfKISDh1fZQoaAZHQF4lx2St/4JoB03oA2gIR0CbgpJo0ygxdX2UKGgGR0BhBRuQ6p5vaAdN6ANoCEdAm4oF0xM363V9lChoBkdAZBeNp/PPcGgHTegDaAhHQJuLXAP/aQF1fZQoaAZHQF47rH2h7E5oB03oA2gIR0CbjEwaR6njdX2UKGgGR0BjqAREnb7CaAdN6ANoCEdAm47vc8DB/XV9lChoBkdAS9jR+jM3ZWgHS/doCEdAm47/exfOU3V9lChoBkdAZPqQvHtF8WgHTegDaAhHQJuTL0btJFt1fZQoaAZHQF7yCMglnh9oB03oA2gIR0CblDa5wwTNdX2UKGgGR0BkVUyrPt2LaAdN6ANoCEdAm5Wp0KZ2IXV9lChoBkdAZIGULUkOZ2gHTegDaAhHQJuZsXSBshx1fZQoaAZHQDQv+yZ8a4toB0v+aAhHQJuaqzv7WNF1fZQoaAZHQGGfBQ3xWktoB03oA2gIR0Cbnl4etCAudX2UKGgGR0BhcFU2kzoEaAdN6ANoCEdAm59homG/OHV9lChoBkdAZstvv0AcUGgHTegDaAhHQJug6skpqh11fZQoaAZHQGbgE0rK/21oB03oA2gIR0CbpoTQVsUJdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb853543f443276be1053376bf3f55dc14b78dec0d048befa623e18582722651
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc3de88d89a0132f5b401e49ed6d7ecfb2ccbbc37ae9188d1960c6df03eeb8a4
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (160 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 240.0689688, "std_reward": 46.24204388573635, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-26T10:17:02.950549"}