File size: 427 Bytes
a505b52
 
 
 
 
 
 
 
 
f8bae5e
a505b52
 
9e5e1b5
 
62c1215
9e5e1b5
 
a505b52
 
 
 
9e5e1b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
---

language: 
  - py
metrics:
- f1

---

To use our fine-tuned BioBERT model to predict whether a sentence from a radiology reports makes reference to priors, run the following:

```python
from transformers import AutoTokenizer, AutoModelForTokenClassification

modelname = "rajpurkarlab/filbert"
tokenizer = AutoTokenizer.from_pretrained(modelname)
model = AutoModelForTokenClassification.from_pretrained(modelname)
```