File size: 427 Bytes
a505b52 f8bae5e a505b52 9e5e1b5 62c1215 9e5e1b5 a505b52 9e5e1b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
---
language:
- py
metrics:
- f1
---
To use our fine-tuned BioBERT model to predict whether a sentence from a radiology reports makes reference to priors, run the following:
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
modelname = "rajpurkarlab/filbert"
tokenizer = AutoTokenizer.from_pretrained(modelname)
model = AutoModelForTokenClassification.from_pretrained(modelname)
```
|