--- library_name: coreml tags: - coreml - sentiment-analysis - distilbert - text-classification license: apache-2.0 --- # sentiment-analyzer-coreml This is a CoreML version of the DistilBERT sentiment analysis model, converted from the Hugging Face model `distilbert-base-uncased-finetuned-sst-2-english`. ## Model Details - **Original Model**: `distilbert-base-uncased-finetuned-sst-2-english` - **Task**: Sentiment Analysis - **Framework**: CoreML - **Input**: Text (tokenized as input_ids and attention_mask) - **Output**: Logits for sentiment classification (2 classes: negative, positive) ## Usage ### Python (CoreML) ```python import coremltools as ct # Load the model model = ct.models.MLModel("sentiment_analyzer.mlpackage") # Get model spec spec = model.get_spec() print("Model type:", spec.WhichOneof('Type')) # Make predictions (you'll need to tokenize your input first) # The model expects input_ids and attention_mask as inputs ``` ### Swift (iOS/macOS) ```swift import CoreML // Load the model guard let model = try? MLModel(contentsOf: URL(fileURLWithPath: "sentiment_analyzer.mlpackage")) else { return } // Make predictions // You'll need to convert your text to the required input format ``` ## Input Format The model expects two inputs: - `input_ids`: Tokenized input text (shape: [1, sequence_length]) - `attention_mask`: Attention mask (shape: [1, sequence_length]) ## Output Format The model outputs logits for sentiment classification: - Shape: [1, 2] (batch_size, num_classes) - Classes: [negative, positive] ## Conversion Notes This model was converted using coremltools from the original PyTorch model. The conversion process involved: 1. Loading the Hugging Face model 2. Wrapping it to return only logits (tensor output) 3. Tracing with PyTorch JIT 4. Converting to CoreML format ## Requirements - iOS 15+ / macOS 12+ (for ML Program format) - CoreML framework