--- library_name: transformers base_model: microsoft/codebert-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: gpad-v1-entropy-taskA results: [] --- # gpad-v1-entropy-taskA This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0423 - Accuracy: 0.9908 - F1 Macro: 0.9912 - F1 Weighted: 0.9908 - Precision Macro: 0.9921 - Recall Macro: 0.9903 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted | Precision Macro | Recall Macro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-----------:|:---------------:|:------------:| | 0.0643 | 1.0 | 7813 | 0.0518 | 0.9881 | 0.9885 | 0.9881 | 0.9920 | 0.9851 | | 0.0261 | 2.0 | 15626 | 0.0409 | 0.9902 | 0.9906 | 0.9902 | 0.9914 | 0.9897 | | 0.044 | 3.0 | 23439 | 0.0423 | 0.9908 | 0.9912 | 0.9908 | 0.9921 | 0.9903 | ### Framework versions - Transformers 4.53.3 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.2