File size: 23,225 Bytes
096700b 0da044f 096700b ad723d1 096700b 3882f50 096700b 3882f50 0da044f 3882f50 096700b 4a7d9bc 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 3882f50 096700b 3882f50 ea1c4e6 3882f50 ea1c4e6 3882f50 096700b 3882f50 864b849 3882f50 864b849 3882f50 864b849 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b 3882f50 096700b 42728a5 0da044f 096700b 0da044f 096700b 0da044f 096700b 0da044f 096700b ad723d1 0da044f 096700b 0da044f 4a7d9bc 096700b 0da044f 096700b 42728a5 096700b 0da044f 096700b ad723d1 096700b 0da044f 096700b 4a7d9bc 096700b 0da044f 096700b 42728a5 096700b 0da044f 096700b ad723d1 096700b 0da044f 096700b ad723d1 096700b 4a7d9bc 096700b 0da044f ad723d1 096700b ad723d1 096700b ad723d1 096700b ad723d1 096700b 3882f50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
---
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:1000000
- loss:SpladeLoss
- loss:SparseMarginMSELoss
- loss:FlopsLoss
base_model:
- prajjwal1/bert-mini
widget:
- text: >-
Caffeine is a central nervous system stimulant. It works by stimulating the
brain. Caffeine is found naturally in foods and beverages such as coffee,
tea, colas, energy and chocolate. Botanical sources of caffeine include kola
nuts, guarana, and yerba mate.
- text: >-
Tim Hardaway, Jr. Compared To My 5ft 10in (177cm) Height. Tim Hardaway,
Jr.'s height is 6ft 6in or 198cm while I am 5ft 10in or 177cm. I am shorter
compared to him. To find out how much shorter I am, we would have to
subtract my height from Tim Hardaway, Jr.'s height. Therefore I am shorter
to him for about 21cm.
- text: benefits of honey and lemon
- text: >-
How To Cook Corn on the Cob in the Microwave What You Need. Ingredients 1 or
more ears fresh, un-shucked sweet corn Equipment Microwave Cooling rack or
cutting board Instructions. Place 1 to 4 ears of corn in the microwave:
Arrange 1 to 4 ears of corn, un-shucked, in the microwave. If you prefer,
you can set them on a microwaveable plate or tray. If you need to cook more
than 4 ears of corn, cook them in batches. Microwave for 3 to 5 minutes: For
just 1 or 2 ears of corn, microwave for 3 minutes. For 3 or 4 ears,
microwave for 4 minutes. If you like softer corn or if your ears are
particularly large, microwave for an additional minute.
- text: >-
The law recognizes two basic kinds of warrantiesimplied warranties and
express warranties. Implied Warranties. Implied warranties are unspoken,
unwritten promises, created by state law, that go from you, as a seller or
merchant, to your customers.
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
model-index:
- name: SPLADE Sparse Encoder
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: dot_accuracy@1
value: 0.5018
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8286
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.9194
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9746
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.5018
name: Dot Precision@1
- type: dot_precision@3
value: 0.2839333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.19103999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.10255999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.4867666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.81485
name: Dot Recall@3
- type: dot_recall@5
value: 0.9096166666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.9709333333333334
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7457042059559617
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6749323809523842
name: Dot Mrr@10
- type: dot_map@100
value: 0.670785161566693
name: Dot Map@100
- type: query_active_dims
value: 22.584999084472656
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9992600419669592
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 174.85202722777373
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9942712788405814
name: Corpus Sparsity Ratio
license: mit
datasets:
- microsoft/ms_marco
language:
- en
---
# SPLADE-BERT-Mini-Distil
This is a SPLADE sparse retrieval model based on BERT-Mini (11M) that was trained by distilling a Cross-Encoder on the MSMARCO dataset. The cross-encoder used was [ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2).
This tiny SPLADE model is `6x` smaller than Naver's official `splade-v3-distilbert` while having `85%` of it's performance on the MSMARCO benchmark. This model is small enough to be used without a GPU on a dataset of a few thousand documents.
- `Collection:` https://huggingface.co/collections/rasyosef/splade-tiny-msmarco-687c548c0691d95babf65b70
- `Distillation Dataset:` https://huggingface.co/datasets/yosefw/msmarco-train-distil-v2
- `Code:` https://github.com/rasyosef/splade-tiny-msmarco
## Performance
The splade models were evaluated on 55 thousand queries and 8.84 million documents from the [MSMARCO](https://huggingface.co/datasets/microsoft/ms_marco) dataset.
||Size (# Params)|MRR@10 (MS MARCO dev)|
|:---|:----|:-------------------|
|`BM25`|-|18.0|-|-|
|`rasyosef/splade-tiny`|4.4M|30.9|
|`rasyosef/splade-mini`|11.2M|34.1|
|`naver/splade-v3-distilbert`|67.0M|38.7|
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("yosefw/SPLADE-BERT-Mini-BS256-distil")
# Run inference
queries = [
"common law implied warranty",
]
documents = [
'The law recognizes two basic kinds of warrantiesimplied warranties and express warranties. Implied Warranties. Implied warranties are unspoken, unwritten promises, created by state law, that go from you, as a seller or merchant, to your customers.',
'An implied warranty is a contract law term for certain assurances that are presumed in the sale of products or real property.',
'The implied warranty of fitness for a particular purpose is a promise that the law says you, as a seller, make when your customer relies on your advice that a product can be used for some specific purpose.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[22.4364, 22.7160, 21.7330]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Model Details
### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [prajjwal1/bert-mini](https://huggingface.co/prajjwal1/bert-mini)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
```
## More
<details><summary>Click to expand</summary>
## Evaluation
### Metrics
#### Sparse Information Retrieval
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
| Metric | Value |
|:----------------------|:-----------|
| dot_accuracy@1 | 0.5018 |
| dot_accuracy@3 | 0.8286 |
| dot_accuracy@5 | 0.9194 |
| dot_accuracy@10 | 0.9746 |
| dot_precision@1 | 0.5018 |
| dot_precision@3 | 0.2839 |
| dot_precision@5 | 0.191 |
| dot_precision@10 | 0.1026 |
| dot_recall@1 | 0.4868 |
| dot_recall@3 | 0.8148 |
| dot_recall@5 | 0.9096 |
| dot_recall@10 | 0.9709 |
| **dot_ndcg@10** | **0.7457** |
| dot_mrr@10 | 0.6749 |
| dot_map@100 | 0.6708 |
| query_active_dims | 22.585 |
| query_sparsity_ratio | 0.9993 |
| corpus_active_dims | 174.852 |
| corpus_sparsity_ratio | 0.9943 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,000,000 training samples
* Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, <code>negative_2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative_1 | negative_2 | label |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------|
| type | string | string | string | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.01 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 80.48 tokens</li><li>max: 247 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 79.27 tokens</li><li>max: 213 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 75.56 tokens</li><li>max: 190 tokens</li></ul> | <ul><li>size: 2 elements</li></ul> |
* Samples:
| query | positive | negative_1 | negative_2 | label |
|:-----------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------|
| <code>friendly home health care</code> | <code>Medicare Evaluation of the Quality of Care. The quality of care given at Friendly Care Home Health Services is periodically evaluated by Medicare. The results of the most recent evaluation period are listed below to help you compare home care agencies in your area. More Info.</code> | <code>Every participant took the same survey so it is a useful way to compare Friendly Care Home Health Services to other home care agencies.</code> | <code>It covers a wide range of services and can often delay the need for long-term nursing home care. More specifically, home health care may include occupational and physical therapy, speech therapy, and even skilled nursing.</code> | <code>[1.2647171020507812, 9.144136428833008]</code> |
| <code>how much does the xbox elite controller weigh</code> | <code>How much does an Xbox 360 weigh? A: The weight of an Xbox 360 depends on the different model purchased, with an original Xbox 360 or Xbox 360 Elite weighing 7.7 pounds with a hard drive and a newer Xbox 360 Slim weighing 6.3 pounds. An Xbox 360 without a hard drive weighs 7 pounds.</code> | <code>How much does 6 xbox 360 games/cases weigh? How much does an xbox 360 elite weigh (in the box)? How much does an xbox 360 weigh? im going to fedex one? I am considering purchasing an Xbox 360, or a Playstation 3...</code> | <code>1 You can only upload videos smaller than 600 MB. 2 You can only upload a photo (png, jpg, jpeg) or video (3gp, 3gpp, mp4, mov, avi, mpg, mpeg, rm). 3 You can only upload a photo or video. Video should be smaller than <b>600 MB/5 minutes</b>.</code> | <code>[4.903870582580566, 18.162578582763672]</code> |
| <code>what county is norfolk, ct in</code> | <code>Norfolk, Connecticut. Norfolk (local /ˈnɔːrfɔːrk/) is a town in Litchfield County, Connecticut, United States. The population was 1,787 at the 2010 census.</code> | <code>Norfolk Historic District. The Norfolk Historic District was listed on the National Register of Historic Places in 1979. Portions of the content on this web page were adapted from a copy of the original nomination document. [†] Adaptation copyright © 2010, The Gombach Group. Description.</code> | <code>Terms begin the first day of the month. Grand Juries, 1st and 3rd Wednesday of each month. Civil cases set by agreement of counsel and consent of the court; scheduling orders are mandatory in most cases. Civil and Criminal trials begin at 9:30 a.m.</code> | <code>[12.4237699508667, 21.46290397644043]</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
```json
{
"loss": "SparseMarginMSELoss",
"document_regularizer_weight": 0.12,
"query_regularizer_weight": 0.2
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 4e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.025
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 4e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.025
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | dot_ndcg@10 |
|:-----:|:-----:|:-------------:|:-----------:|
| 1.0 | 15625 | 9.3147 | 0.7353 |
| 2.0 | 31250 | 7.5267 | 0.7429 |
| 3.0 | 46875 | 6.3289 | 0.7457 |
### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
```
#### SparseMarginMSELoss
```bibtex
@misc{hofstätter2021improving,
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
year={2021},
eprint={2010.02666},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```
#### FlopsLoss
```bibtex
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->
</details> |