File size: 23,225 Bytes
096700b
 
 
 
 
 
 
0da044f
096700b
ad723d1
096700b
3882f50
 
096700b
3882f50
 
 
 
 
 
 
 
 
 
 
0da044f
3882f50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
096700b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7d9bc
096700b
 
 
 
 
 
 
 
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
096700b
3882f50
 
 
 
 
096700b
 
 
3882f50
ea1c4e6
3882f50
ea1c4e6
3882f50
096700b
3882f50
 
 
864b849
3882f50
864b849
3882f50
 
 
 
 
 
 
 
864b849
096700b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da044f
096700b
 
0da044f
096700b
 
0da044f
 
 
096700b
 
 
 
 
 
 
 
 
0da044f
096700b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3882f50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
096700b
 
 
 
 
 
 
 
42728a5
 
0da044f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
096700b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da044f
 
096700b
0da044f
 
 
 
096700b
0da044f
 
 
 
 
096700b
 
 
ad723d1
0da044f
 
096700b
 
 
 
 
 
 
0da044f
 
 
4a7d9bc
096700b
0da044f
096700b
42728a5
096700b
 
 
 
 
 
 
 
 
0da044f
 
096700b
 
ad723d1
096700b
 
0da044f
096700b
 
 
 
 
4a7d9bc
096700b
 
 
0da044f
096700b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42728a5
096700b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da044f
096700b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad723d1
096700b
 
 
 
 
 
 
0da044f
 
 
 
 
096700b
 
 
ad723d1
096700b
4a7d9bc
096700b
0da044f
ad723d1
 
096700b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad723d1
096700b
ad723d1
 
 
 
 
096700b
ad723d1
096700b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3882f50
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
---
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:1000000
- loss:SpladeLoss
- loss:SparseMarginMSELoss
- loss:FlopsLoss
base_model:
- prajjwal1/bert-mini
widget:
- text: >-
    Caffeine is a central nervous system stimulant. It works by stimulating the
    brain. Caffeine is found naturally in foods and beverages such as coffee,
    tea, colas, energy and chocolate. Botanical sources of caffeine include kola
    nuts, guarana, and yerba mate.
- text: >-
    Tim Hardaway, Jr. Compared To My 5ft 10in (177cm) Height. Tim Hardaway,
    Jr.'s height is 6ft 6in or 198cm while I am 5ft 10in or 177cm. I am shorter
    compared to him. To find out how much shorter I am, we would have to
    subtract my height from Tim Hardaway, Jr.'s height. Therefore I am shorter
    to him for about 21cm.
- text: benefits of honey and lemon
- text: >-
    How To Cook Corn on the Cob in the Microwave What You Need. Ingredients 1 or
    more ears fresh, un-shucked sweet corn Equipment Microwave Cooling rack or
    cutting board Instructions. Place 1 to 4 ears of corn in the microwave:
    Arrange 1 to 4 ears of corn, un-shucked, in the microwave. If you prefer,
    you can set them on a microwaveable plate or tray. If you need to cook more
    than 4 ears of corn, cook them in batches. Microwave for 3 to 5 minutes: For
    just 1 or 2 ears of corn, microwave for 3 minutes. For 3 or 4 ears,
    microwave for 4 minutes. If you like softer corn or if your ears are
    particularly large, microwave for an additional minute.
- text: >-
    The law recognizes two basic kinds of warrantiesimplied warranties and
    express warranties. Implied Warranties. Implied warranties are unspoken,
    unwritten promises, created by state law, that go from you, as a seller or
    merchant, to your customers.
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
model-index:
- name: SPLADE Sparse Encoder
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: dot_accuracy@1
      value: 0.5018
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.8286
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9194
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9746
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.5018
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2839333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.19103999999999996
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.10255999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.4867666666666667
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.81485
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.9096166666666667
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.9709333333333334
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.7457042059559617
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6749323809523842
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.670785161566693
      name: Dot Map@100
    - type: query_active_dims
      value: 22.584999084472656
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9992600419669592
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 174.85202722777373
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9942712788405814
      name: Corpus Sparsity Ratio
license: mit
datasets:
- microsoft/ms_marco
language:
- en
---


# SPLADE-BERT-Mini-Distil

This is a SPLADE sparse retrieval model based on BERT-Mini (11M) that was trained by distilling a Cross-Encoder on the MSMARCO dataset. The cross-encoder used was [ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2). 

This tiny SPLADE model is `6x` smaller than Naver's official `splade-v3-distilbert` while having `85%` of it's performance on the MSMARCO benchmark. This model is small enough to be used without a GPU on a dataset of a few thousand documents. 

- `Collection:` https://huggingface.co/collections/rasyosef/splade-tiny-msmarco-687c548c0691d95babf65b70
- `Distillation Dataset:` https://huggingface.co/datasets/yosefw/msmarco-train-distil-v2
- `Code:` https://github.com/rasyosef/splade-tiny-msmarco

## Performance

The splade models were evaluated on 55 thousand queries and 8.84 million documents from the [MSMARCO](https://huggingface.co/datasets/microsoft/ms_marco) dataset.

||Size (# Params)|MRR@10 (MS MARCO dev)|
|:---|:----|:-------------------|
|`BM25`|-|18.0|-|-|
|`rasyosef/splade-tiny`|4.4M|30.9|
|`rasyosef/splade-mini`|11.2M|34.1|
|`naver/splade-v3-distilbert`|67.0M|38.7|

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("yosefw/SPLADE-BERT-Mini-BS256-distil")
# Run inference
queries = [
    "common law implied warranty",
]
documents = [
    'The law recognizes two basic kinds of warrantiesimplied warranties and express warranties. Implied Warranties. Implied warranties are unspoken, unwritten promises, created by state law, that go from you, as a seller or merchant, to your customers.',
    'An implied warranty is a contract law term for certain assurances that are presumed in the sale of products or real property.',
    'The implied warranty of fitness for a particular purpose is a promise that the law says you, as a seller, make when your customer relies on your advice that a product can be used for some specific purpose.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[22.4364, 22.7160, 21.7330]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Model Details

### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [prajjwal1/bert-mini](https://huggingface.co/prajjwal1/bert-mini)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```
SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'})
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
```

## More
<details><summary>Click to expand</summary>

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric                | Value      |
|:----------------------|:-----------|
| dot_accuracy@1        | 0.5018     |
| dot_accuracy@3        | 0.8286     |
| dot_accuracy@5        | 0.9194     |
| dot_accuracy@10       | 0.9746     |
| dot_precision@1       | 0.5018     |
| dot_precision@3       | 0.2839     |
| dot_precision@5       | 0.191      |
| dot_precision@10      | 0.1026     |
| dot_recall@1          | 0.4868     |
| dot_recall@3          | 0.8148     |
| dot_recall@5          | 0.9096     |
| dot_recall@10         | 0.9709     |
| **dot_ndcg@10**       | **0.7457** |
| dot_mrr@10            | 0.6749     |
| dot_map@100           | 0.6708     |
| query_active_dims     | 22.585     |
| query_sparsity_ratio  | 0.9993     |
| corpus_active_dims    | 174.852    |
| corpus_sparsity_ratio | 0.9943     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 1,000,000 training samples
* Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, <code>negative_2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                            | positive                                                                            | negative_1                                                                          | negative_2                                                                          | label                              |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              | string                                                                              | list                               |
  | details | <ul><li>min: 4 tokens</li><li>mean: 9.01 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 80.48 tokens</li><li>max: 247 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 79.27 tokens</li><li>max: 213 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 75.56 tokens</li><li>max: 190 tokens</li></ul> | <ul><li>size: 2 elements</li></ul> |
* Samples:
  | query                                                      | positive                                                                                                                                                                                                                                                                                                | negative_1                                                                                                                                                                                                                                                                                                    | negative_2                                                                                                                                                                                                                                                            | label                                                |
  |:-----------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------|
  | <code>friendly home health care</code>                     | <code>Medicare Evaluation of the Quality of Care. The quality of care given at Friendly Care Home Health Services is periodically evaluated by Medicare. The results of the most recent evaluation period are listed below to help you compare home care agencies in your area. More Info.</code>       | <code>Every participant took the same survey so it is a useful way to compare Friendly Care Home Health Services to other home care agencies.</code>                                                                                                                                                          | <code>It covers a wide range of services and can often delay the need for long-term nursing home care. More specifically, home health care may include occupational and physical therapy, speech therapy, and even skilled nursing.</code>                            | <code>[1.2647171020507812, 9.144136428833008]</code> |
  | <code>how much does the xbox elite controller weigh</code> | <code>How much does an Xbox 360 weigh? A: The weight of an Xbox 360 depends on the different model purchased, with an original Xbox 360 or Xbox 360 Elite weighing 7.7 pounds with a hard drive and a newer Xbox 360 Slim weighing 6.3 pounds. An Xbox 360 without a hard drive weighs 7 pounds.</code> | <code>How much does 6 xbox 360 games/cases weigh? How much does an xbox 360 elite weigh (in the box)? How much does an xbox 360 weigh? im going to fedex one? I am considering purchasing an Xbox 360, or a Playstation 3...</code>                                                                           | <code>1 You can only upload videos smaller than 600 MB. 2  You can only upload a photo (png, jpg, jpeg) or video (3gp, 3gpp, mp4, mov, avi, mpg, mpeg, rm). 3  You can only upload a photo or video.  Video should be smaller than <b>600 MB/5 minutes</b>.</code>    | <code>[4.903870582580566, 18.162578582763672]</code> |
  | <code>what county is norfolk, ct in</code>                 | <code>Norfolk, Connecticut. Norfolk (local /ˈnɔːrfɔːrk/) is a town in Litchfield County, Connecticut, United States. The population was 1,787 at the 2010 census.</code>                                                                                                                                | <code>Norfolk Historic District. The Norfolk Historic District was listed on the National Register of Historic Places in 1979. Portions of the content on this web page were adapted from a copy of the original nomination document. [†] Adaptation copyright © 2010, The Gombach Group. Description.</code> | <code>Terms begin the first day of the month. Grand Juries, 1st and 3rd Wednesday of each month. Civil cases set by agreement of counsel and consent of the court; scheduling orders are mandatory in most cases. Civil and Criminal trials begin at 9:30 a.m.</code> | <code>[12.4237699508667, 21.46290397644043]</code>   |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseMarginMSELoss",
      "document_regularizer_weight": 0.12,
      "query_regularizer_weight": 0.2
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 4e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.025
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 4e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.025
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch | Step  | Training Loss | dot_ndcg@10 |
|:-----:|:-----:|:-------------:|:-----------:|
| 1.0   | 15625 | 9.3147        | 0.7353      |
| 2.0   | 31250 | 7.5267        | 0.7429      |
| 3.0   | 46875 | 6.3289        | 0.7457      |


### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}
```

#### SparseMarginMSELoss
```bibtex
@misc{hofstätter2021improving,
    title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
    author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
    year={2021},
    eprint={2010.02666},
    archivePrefix={arXiv},
    primaryClass={cs.IR}
}
```

#### FlopsLoss
```bibtex
@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> 
</details>