Add new SparseEncoder model
Browse files- README.md +123 -117
- config.json +1 -1
- config_sentence_transformers.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -8,34 +8,45 @@ tags:
|
|
8 |
- sparse
|
9 |
- splade
|
10 |
- generated_from_trainer
|
11 |
-
- dataset_size:
|
12 |
- loss:SpladeLoss
|
13 |
-
- loss:
|
14 |
- loss:FlopsLoss
|
15 |
base_model: prajjwal1/bert-tiny
|
16 |
widget:
|
17 |
-
- text:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
pipeline_tag: feature-extraction
|
40 |
library_name: sentence-transformers
|
41 |
metrics:
|
@@ -59,7 +70,7 @@ metrics:
|
|
59 |
- corpus_active_dims
|
60 |
- corpus_sparsity_ratio
|
61 |
model-index:
|
62 |
-
- name: SPLADE-BERT-Tiny
|
63 |
results:
|
64 |
- task:
|
65 |
type: sparse-information-retrieval
|
@@ -69,67 +80,65 @@ model-index:
|
|
69 |
type: unknown
|
70 |
metrics:
|
71 |
- type: dot_accuracy@1
|
72 |
-
value: 0.
|
73 |
name: Dot Accuracy@1
|
74 |
- type: dot_accuracy@3
|
75 |
-
value: 0.
|
76 |
name: Dot Accuracy@3
|
77 |
- type: dot_accuracy@5
|
78 |
-
value: 0.
|
79 |
name: Dot Accuracy@5
|
80 |
- type: dot_accuracy@10
|
81 |
-
value: 0.
|
82 |
name: Dot Accuracy@10
|
83 |
- type: dot_precision@1
|
84 |
-
value: 0.
|
85 |
name: Dot Precision@1
|
86 |
- type: dot_precision@3
|
87 |
-
value: 0.
|
88 |
name: Dot Precision@3
|
89 |
- type: dot_precision@5
|
90 |
-
value: 0.
|
91 |
name: Dot Precision@5
|
92 |
- type: dot_precision@10
|
93 |
-
value: 0.
|
94 |
name: Dot Precision@10
|
95 |
- type: dot_recall@1
|
96 |
-
value: 0.
|
97 |
name: Dot Recall@1
|
98 |
- type: dot_recall@3
|
99 |
-
value: 0.
|
100 |
name: Dot Recall@3
|
101 |
- type: dot_recall@5
|
102 |
-
value: 0.
|
103 |
name: Dot Recall@5
|
104 |
- type: dot_recall@10
|
105 |
-
value: 0.
|
106 |
name: Dot Recall@10
|
107 |
- type: dot_ndcg@10
|
108 |
-
value: 0.
|
109 |
name: Dot Ndcg@10
|
110 |
- type: dot_mrr@10
|
111 |
-
value: 0.
|
112 |
name: Dot Mrr@10
|
113 |
- type: dot_map@100
|
114 |
-
value: 0.
|
115 |
name: Dot Map@100
|
116 |
- type: query_active_dims
|
117 |
-
value:
|
118 |
name: Query Active Dims
|
119 |
- type: query_sparsity_ratio
|
120 |
-
value: 0.
|
121 |
name: Query Sparsity Ratio
|
122 |
- type: corpus_active_dims
|
123 |
-
value:
|
124 |
name: Corpus Active Dims
|
125 |
- type: corpus_sparsity_ratio
|
126 |
-
value: 0.
|
127 |
name: Corpus Sparsity Ratio
|
128 |
-
datasets:
|
129 |
-
- microsoft/ms_marco
|
130 |
---
|
131 |
|
132 |
-
# SPLADE-BERT-Tiny
|
133 |
|
134 |
This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
|
135 |
## Model Details
|
@@ -175,15 +184,15 @@ Then you can load this model and run inference.
|
|
175 |
from sentence_transformers import SparseEncoder
|
176 |
|
177 |
# Download from the 🤗 Hub
|
178 |
-
model = SparseEncoder("
|
179 |
# Run inference
|
180 |
queries = [
|
181 |
-
"what
|
182 |
]
|
183 |
documents = [
|
184 |
-
'
|
185 |
-
'
|
186 |
-
'
|
187 |
]
|
188 |
query_embeddings = model.encode_query(queries)
|
189 |
document_embeddings = model.encode_document(documents)
|
@@ -193,7 +202,7 @@ print(query_embeddings.shape, document_embeddings.shape)
|
|
193 |
# Get the similarity scores for the embeddings
|
194 |
similarities = model.similarity(query_embeddings, document_embeddings)
|
195 |
print(similarities)
|
196 |
-
# tensor([[
|
197 |
```
|
198 |
|
199 |
<!--
|
@@ -230,25 +239,25 @@ You can finetune this model on your own dataset.
|
|
230 |
|
231 |
| Metric | Value |
|
232 |
|:----------------------|:-----------|
|
233 |
-
| dot_accuracy@1 | 0.
|
234 |
-
| dot_accuracy@3 | 0.
|
235 |
-
| dot_accuracy@5 | 0.
|
236 |
-
| dot_accuracy@10 | 0.
|
237 |
-
| dot_precision@1 | 0.
|
238 |
-
| dot_precision@3 | 0.
|
239 |
-
| dot_precision@5 | 0.
|
240 |
-
| dot_precision@10 | 0.
|
241 |
-
| dot_recall@1 | 0.
|
242 |
-
| dot_recall@3 | 0.
|
243 |
-
| dot_recall@5 | 0.
|
244 |
-
| dot_recall@10 | 0.
|
245 |
-
| **dot_ndcg@10** | **0.
|
246 |
-
| dot_mrr@10 | 0.
|
247 |
-
| dot_map@100 | 0.
|
248 |
-
| query_active_dims |
|
249 |
-
| query_sparsity_ratio | 0.
|
250 |
-
| corpus_active_dims |
|
251 |
-
| corpus_sparsity_ratio | 0.
|
252 |
|
253 |
<!--
|
254 |
## Bias, Risks and Limitations
|
@@ -268,25 +277,25 @@ You can finetune this model on your own dataset.
|
|
268 |
|
269 |
#### Unnamed Dataset
|
270 |
|
271 |
-
* Size:
|
272 |
-
* Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, and <code>
|
273 |
* Approximate statistics based on the first 1000 samples:
|
274 |
-
| | query | positive | negative_1 | negative_2 |
|
275 |
-
|
276 |
-
| type | string | string | string | string |
|
277 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 9.
|
278 |
* Samples:
|
279 |
-
| query
|
280 |
-
|
281 |
-
| <code>
|
282 |
-
| <code>
|
283 |
-
| <code>
|
284 |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
285 |
```json
|
286 |
{
|
287 |
-
"loss": "
|
288 |
-
"document_regularizer_weight": 0.
|
289 |
-
"query_regularizer_weight": 0.
|
290 |
}
|
291 |
```
|
292 |
|
@@ -294,18 +303,15 @@ You can finetune this model on your own dataset.
|
|
294 |
#### Non-Default Hyperparameters
|
295 |
|
296 |
- `eval_strategy`: epoch
|
297 |
-
- `per_device_train_batch_size`:
|
298 |
-
- `per_device_eval_batch_size`:
|
299 |
-
- `
|
300 |
-
- `learning_rate`: 6e-05
|
301 |
- `num_train_epochs`: 6
|
302 |
- `lr_scheduler_type`: cosine
|
303 |
- `warmup_ratio`: 0.025
|
304 |
- `fp16`: True
|
305 |
- `load_best_model_at_end`: True
|
306 |
- `optim`: adamw_torch_fused
|
307 |
-
- `push_to_hub`: True
|
308 |
-
- `batch_sampler`: no_duplicates
|
309 |
|
310 |
#### All Hyperparameters
|
311 |
<details><summary>Click to expand</summary>
|
@@ -314,14 +320,14 @@ You can finetune this model on your own dataset.
|
|
314 |
- `do_predict`: False
|
315 |
- `eval_strategy`: epoch
|
316 |
- `prediction_loss_only`: True
|
317 |
-
- `per_device_train_batch_size`:
|
318 |
-
- `per_device_eval_batch_size`:
|
319 |
- `per_gpu_train_batch_size`: None
|
320 |
- `per_gpu_eval_batch_size`: None
|
321 |
-
- `gradient_accumulation_steps`:
|
322 |
- `eval_accumulation_steps`: None
|
323 |
- `torch_empty_cache_steps`: None
|
324 |
-
- `learning_rate`:
|
325 |
- `weight_decay`: 0.0
|
326 |
- `adam_beta1`: 0.9
|
327 |
- `adam_beta2`: 0.999
|
@@ -388,7 +394,7 @@ You can finetune this model on your own dataset.
|
|
388 |
- `dataloader_persistent_workers`: False
|
389 |
- `skip_memory_metrics`: True
|
390 |
- `use_legacy_prediction_loop`: False
|
391 |
-
- `push_to_hub`:
|
392 |
- `resume_from_checkpoint`: None
|
393 |
- `hub_model_id`: None
|
394 |
- `hub_strategy`: every_save
|
@@ -423,7 +429,7 @@ You can finetune this model on your own dataset.
|
|
423 |
- `eval_use_gather_object`: False
|
424 |
- `average_tokens_across_devices`: False
|
425 |
- `prompts`: None
|
426 |
-
- `batch_sampler`:
|
427 |
- `multi_dataset_batch_sampler`: proportional
|
428 |
- `router_mapping`: {}
|
429 |
- `learning_rate_mapping`: {}
|
@@ -433,23 +439,23 @@ You can finetune this model on your own dataset.
|
|
433 |
### Training Logs
|
434 |
| Epoch | Step | Training Loss | dot_ndcg@10 |
|
435 |
|:-------:|:---------:|:-------------:|:-----------:|
|
436 |
-
| 1.0 |
|
437 |
-
| 2.0 |
|
438 |
-
| 3.0 |
|
439 |
-
| 4.0 |
|
440 |
-
| 5.0 |
|
441 |
-
| **6.0** | **
|
442 |
|
443 |
* The bold row denotes the saved checkpoint.
|
444 |
|
445 |
### Framework Versions
|
446 |
-
- Python: 3.11.
|
447 |
- Sentence Transformers: 5.0.0
|
448 |
-
- Transformers: 4.53.
|
449 |
- PyTorch: 2.6.0+cu124
|
450 |
-
- Accelerate: 1.
|
451 |
-
- Datasets:
|
452 |
-
- Tokenizers: 0.21.
|
453 |
|
454 |
## Citation
|
455 |
|
@@ -481,15 +487,15 @@ You can finetune this model on your own dataset.
|
|
481 |
}
|
482 |
```
|
483 |
|
484 |
-
####
|
485 |
```bibtex
|
486 |
-
@misc{
|
487 |
-
title={Efficient
|
488 |
-
author={
|
489 |
-
year={
|
490 |
-
eprint={
|
491 |
archivePrefix={arXiv},
|
492 |
-
primaryClass={cs.
|
493 |
}
|
494 |
```
|
495 |
|
@@ -519,4 +525,4 @@ You can finetune this model on your own dataset.
|
|
519 |
## Model Card Contact
|
520 |
|
521 |
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
522 |
-
-->
|
|
|
8 |
- sparse
|
9 |
- splade
|
10 |
- generated_from_trainer
|
11 |
+
- dataset_size:496123
|
12 |
- loss:SpladeLoss
|
13 |
+
- loss:SparseMarginMSELoss
|
14 |
- loss:FlopsLoss
|
15 |
base_model: prajjwal1/bert-tiny
|
16 |
widget:
|
17 |
+
- text: Hurley doesn't just want to be your go-to for surf gear, but the be the brand
|
18 |
+
that represents your lifestyle. Of course you have your pick up board shorts,
|
19 |
+
tanks and a Hurley hat while you're on the beach, but you can also look at graphic
|
20 |
+
tees, sandals, and accessories when you're on the street.
|
21 |
+
- text: 'Electric field of a positive and a negative point charge. Electric charge
|
22 |
+
is the physical property of matter that causes it to experience a force when placed
|
23 |
+
in an electromagnetic field.There are two types of electric charges: positive
|
24 |
+
and negative.lectric charge is a characteristic property of many subatomic particles.
|
25 |
+
The charges of free-standing particles are integer multiples of the elementary
|
26 |
+
charge e; we say that electric charge is quantized. Michael Faraday, in his electrolysis
|
27 |
+
experiments, was the first to note the discrete nature of electric charge.'
|
28 |
+
- text: The term mechanical digestion refers to the physical breakdown of large pieces
|
29 |
+
of food into smaller pieces which can subsequently be accessed by digestive enzymes.
|
30 |
+
In chemical digestion, enzymes break down food into the small molecules the body
|
31 |
+
can use.
|
32 |
+
- text: Kids and Quick Solutions. Children learn to put away their clothes when they
|
33 |
+
can reach the hanging rods. This is actually fun for little ones -- they may spend
|
34 |
+
a long stretch of time putting hangers on and taking them off the rods -- as long
|
35 |
+
as the rods are child-height.So take your stand against piles of clothes on the
|
36 |
+
floor of the teen's bedroom early by re-sizing the closet to fit the kid.his is
|
37 |
+
actually fun for little ones -- they may spend a long stretch of time putting
|
38 |
+
hangers on and taking them off the rods -- as long as the rods are child-height.
|
39 |
+
So take your stand against piles of clothes on the floor of the teen's bedroom
|
40 |
+
early by re-sizing the closet to fit the kid.
|
41 |
+
- text: About EUS (endoscopic ultrasound). An EUS, or endoscopic ultrasound, is an
|
42 |
+
outpatient procedure used to closely examine the tissues in the digestive tract.
|
43 |
+
The procedure is done using a standard endoscope and a tiny ultrasound device.The
|
44 |
+
ultrasound sensor sends back visual images of the digestive tract to a screen,
|
45 |
+
allowing the physician to see deeper into the tissues and the organs beneath the
|
46 |
+
surface of the intestines.. In general, an EUS is a very safe procedure. If your
|
47 |
+
procedure is being done on the upper GI tract, you may have a sore throat for
|
48 |
+
a few days. As a result of the sedation, you should not drive, operate heavy machinery
|
49 |
+
or make any important decisions for up to six hours following the procedure.
|
50 |
pipeline_tag: feature-extraction
|
51 |
library_name: sentence-transformers
|
52 |
metrics:
|
|
|
70 |
- corpus_active_dims
|
71 |
- corpus_sparsity_ratio
|
72 |
model-index:
|
73 |
+
- name: SPLADE-BERT-Tiny-Distil
|
74 |
results:
|
75 |
- task:
|
76 |
type: sparse-information-retrieval
|
|
|
80 |
type: unknown
|
81 |
metrics:
|
82 |
- type: dot_accuracy@1
|
83 |
+
value: 0.4602
|
84 |
name: Dot Accuracy@1
|
85 |
- type: dot_accuracy@3
|
86 |
+
value: 0.7768
|
87 |
name: Dot Accuracy@3
|
88 |
- type: dot_accuracy@5
|
89 |
+
value: 0.885
|
90 |
name: Dot Accuracy@5
|
91 |
- type: dot_accuracy@10
|
92 |
+
value: 0.9548
|
93 |
name: Dot Accuracy@10
|
94 |
- type: dot_precision@1
|
95 |
+
value: 0.4602
|
96 |
name: Dot Precision@1
|
97 |
- type: dot_precision@3
|
98 |
+
value: 0.2653333333333333
|
99 |
name: Dot Precision@3
|
100 |
- type: dot_precision@5
|
101 |
+
value: 0.18391999999999997
|
102 |
name: Dot Precision@5
|
103 |
- type: dot_precision@10
|
104 |
+
value: 0.10024
|
105 |
name: Dot Precision@10
|
106 |
- type: dot_recall@1
|
107 |
+
value: 0.4461833333333334
|
108 |
name: Dot Recall@1
|
109 |
- type: dot_recall@3
|
110 |
+
value: 0.7631166666666666
|
111 |
name: Dot Recall@3
|
112 |
- type: dot_recall@5
|
113 |
+
value: 0.8761
|
114 |
name: Dot Recall@5
|
115 |
- type: dot_recall@10
|
116 |
+
value: 0.9500333333333334
|
117 |
name: Dot Recall@10
|
118 |
- type: dot_ndcg@10
|
119 |
+
value: 0.7094495794736737
|
120 |
name: Dot Ndcg@10
|
121 |
- type: dot_mrr@10
|
122 |
+
value: 0.6344716666666689
|
123 |
name: Dot Mrr@10
|
124 |
- type: dot_map@100
|
125 |
+
value: 0.6306882016403095
|
126 |
name: Dot Map@100
|
127 |
- type: query_active_dims
|
128 |
+
value: 16.77560043334961
|
129 |
name: Query Active Dims
|
130 |
- type: query_sparsity_ratio
|
131 |
+
value: 0.9994503767632085
|
132 |
name: Query Sparsity Ratio
|
133 |
- type: corpus_active_dims
|
134 |
+
value: 102.47956598021874
|
135 |
name: Corpus Active Dims
|
136 |
- type: corpus_sparsity_ratio
|
137 |
+
value: 0.9966424360795421
|
138 |
name: Corpus Sparsity Ratio
|
|
|
|
|
139 |
---
|
140 |
|
141 |
+
# SPLADE-BERT-Tiny-Distil
|
142 |
|
143 |
This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
|
144 |
## Model Details
|
|
|
184 |
from sentence_transformers import SparseEncoder
|
185 |
|
186 |
# Download from the 🤗 Hub
|
187 |
+
model = SparseEncoder("yosefw/SPLADE-BERT-Tiny-distil-msmarco")
|
188 |
# Run inference
|
189 |
queries = [
|
190 |
+
"what is eus appointment",
|
191 |
]
|
192 |
documents = [
|
193 |
+
"Endoscopic Ultrasound (EUS). You've been referred to have an endoscopic ultrasound, or EUS, which will help your doctor, evaluate or treat your condition. This brochure will give you a basic understanding of the procedure-how it is performed, how it can help, and what side effects you might experience.our doctor can use EUS to diagnose the cause of conditions such as abdominal pain or abnormal weight loss. Or, if your doctor has ruled out certain conditions, EUS can confirm your diagnosis and give you a clean bill of health.",
|
194 |
+
'About EUS (endoscopic ultrasound). An EUS, or endoscopic ultrasound, is an outpatient procedure used to closely examine the tissues in the digestive tract. The procedure is done using a standard endoscope and a tiny ultrasound device.The ultrasound sensor sends back visual images of the digestive tract to a screen, allowing the physician to see deeper into the tissues and the organs beneath the surface of the intestines.. In general, an EUS is a very safe procedure. If your procedure is being done on the upper GI tract, you may have a sore throat for a few days. As a result of the sedation, you should not drive, operate heavy machinery or make any important decisions for up to six hours following the procedure.',
|
195 |
+
'Endoscopic Ultrasound (EUS) allows your doctor to examine the lining and the walls of your upper and lower gastrointestinal tract.The upper tract is the esophagus, stomach, and duodenum; the lower tract includes your colon and rectum.Doctors also use EUS to study internal organs that lie next to the gastrointestinal tract, such as the gall bladder and the pancreas. Your endoscopist will use a thin, flexible tube called an endoscope.he upper tract is the esophagus, stomach, and duodenum; the lower tract includes your colon and rectum. Doctors also use EUS to study internal organs that lie next to the gastrointestinal tract, such as the gall bladder and the pancreas.',
|
196 |
]
|
197 |
query_embeddings = model.encode_query(queries)
|
198 |
document_embeddings = model.encode_document(documents)
|
|
|
202 |
# Get the similarity scores for the embeddings
|
203 |
similarities = model.similarity(query_embeddings, document_embeddings)
|
204 |
print(similarities)
|
205 |
+
# tensor([[12.9370, 14.3277, 12.9725]])
|
206 |
```
|
207 |
|
208 |
<!--
|
|
|
239 |
|
240 |
| Metric | Value |
|
241 |
|:----------------------|:-----------|
|
242 |
+
| dot_accuracy@1 | 0.4602 |
|
243 |
+
| dot_accuracy@3 | 0.7768 |
|
244 |
+
| dot_accuracy@5 | 0.885 |
|
245 |
+
| dot_accuracy@10 | 0.9548 |
|
246 |
+
| dot_precision@1 | 0.4602 |
|
247 |
+
| dot_precision@3 | 0.2653 |
|
248 |
+
| dot_precision@5 | 0.1839 |
|
249 |
+
| dot_precision@10 | 0.1002 |
|
250 |
+
| dot_recall@1 | 0.4462 |
|
251 |
+
| dot_recall@3 | 0.7631 |
|
252 |
+
| dot_recall@5 | 0.8761 |
|
253 |
+
| dot_recall@10 | 0.95 |
|
254 |
+
| **dot_ndcg@10** | **0.7094** |
|
255 |
+
| dot_mrr@10 | 0.6345 |
|
256 |
+
| dot_map@100 | 0.6307 |
|
257 |
+
| query_active_dims | 16.7756 |
|
258 |
+
| query_sparsity_ratio | 0.9995 |
|
259 |
+
| corpus_active_dims | 102.4796 |
|
260 |
+
| corpus_sparsity_ratio | 0.9966 |
|
261 |
|
262 |
<!--
|
263 |
## Bias, Risks and Limitations
|
|
|
277 |
|
278 |
#### Unnamed Dataset
|
279 |
|
280 |
+
* Size: 496,123 training samples
|
281 |
+
* Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, <code>negative_2</code>, <code>negative_3</code>, <code>negative_4</code>, and <code>label</code>
|
282 |
* Approximate statistics based on the first 1000 samples:
|
283 |
+
| | query | positive | negative_1 | negative_2 | negative_3 | negative_4 | label |
|
284 |
+
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------|
|
285 |
+
| type | string | string | string | string | string | string | list |
|
286 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 9.09 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 80.68 tokens</li><li>max: 215 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 78.57 tokens</li><li>max: 238 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 77.8 tokens</li><li>max: 253 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 76.46 tokens</li><li>max: 248 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 75.9 tokens</li><li>max: 190 tokens</li></ul> | <ul><li>size: 4 elements</li></ul> |
|
287 |
* Samples:
|
288 |
+
| query | positive | negative_1 | negative_2 | negative_3 | negative_4 | label |
|
289 |
+
|:-------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|
|
290 |
+
| <code>could Nexium antacid cause sweating</code> | <code>Summary: Sweating-excessive is found among people who take Nexium, especially for people who are 60+ old, have been taking the drug for.Personalized health information: on eHealthMe you can find out what patients like me (same gender, age) reported their drugs and conditions on FDA and social media since 1977. I am a 56 year old female who has been taking Nexium for 13 years and has been plagued by shingles.. 2 Support group for people who have Sweating-Excessive. 3 Been on warfarin for 6 days and having sweating at times.</code> | <code>More questions for: Nexium, Sweating-excessive. You may be interested at these reviews (Write a review): 1 Xarelto caused shortness of breath. 2 After taking Xarelto for 3 years I suddently experienced shortness of breath, sweating and pain in my arms. 3 Myrbetriq & hyperhidrosis (night sweats). I am a 56 year old female who has been taking Nexium for 13 years and has been plagued by shingles.. 2 Support group for people who have Sweating-Excessive. 3 Been on warfarin for 6 days and having sweating at times.</code> | <code>NEXIUM may help your acid-related symptoms, but you could still have serious stomach problems. Talk with your doctor. NEXIUM can cause serious side effects, including: 1 Diarrhea. 2 NEXIUM may increase your risk of getting severe diarrhea.3 This diarrhea may be caused by an infection (Clostridium difficile) in your intestines.EXIUM can cause serious side effects, including: 1 Diarrhea. 2 NEXIUM may increase your risk of getting severe diarrhea. 3 This diarrhea may be caused by an infection (Clostridium difficile) in your intestines.</code> | <code>Treatment for sweating. The treatment you have will depend on the cause of your sweating. If you have an infection, antibiotics will treat the infection and stop the sweating. If your sweating is due to cancer, treating the cancer can get rid of the sweating.If you have sweating because treatment has changed your hormone levels, it may settle down after a few weeks or months, once your body is used to the treatment. Talk to your doctor or nurse about your sweats.nfection. Infection is one of the most common causes of sweating in people who have cancer. Infection can give you a high temperature and your body sweats to try and reduce it. Treating the infection can control or stop the sweating.</code> | <code>Esomeprazole is used to treat certain stomach and esophagus problems (such as acid reflux, ulcers). It works by decreasing the amount of acid your stomach makes.ide Effects. See also Precautions section. Headache or abdominal pain may occur. If any of these effects persist or worsen, tell your doctor or pharmacist promptly. Remember that your doctor has prescribed this medication because he or she has judged that the benefit to you is greater than the risk of side effects.</code> | <code>[0.5, 6.390576362609863, 11.97206974029541, 16.409034729003906]</code> |
|
291 |
+
| <code>what is electronic document access</code> | <code>Electronic Document Access (EDA) is a web-based system that provides secure online access, storage, and retrieval of contracts, contract modifications, Government Bills of Lading (GBLs), DFAS Transactions for Others (E110), vouchers, and Contract Deficiency Reports (CDR) to authorized users throughout the Department of Defense (DoD).</code> | <code>An electronic document management system (EDMS) is a software system for organizing and storing different kinds of documents. This type of system is a more particular kind of document management system, a more general type of storage system that helps users to organize and store paper or digital documents.</code> | <code>In many cases, the specific documentation for original storage protocols is a major part of what makes an electronic document management system so valuable to a business or organization.</code> | <code>Benefits derived from DoD EDA include: 1 Single-source, timely information. 2 Electronic search and retrieval – 24/7 access/retrieval capability. 3 Increased visibility of all procurement & payment actions. Reduction in data entry/human 1 error. Lower postage, handling, retention and document management costs.</code> | <code>If YES, go to www.docusign.net and log in with your email and password. On the DocuSign Web Application, select the Documents tab. Your documents are listed there. If NO, you can access the document by opening the DocuSign Completed email. This email is sent to you once you have finished signing a DocuSign document. See the instructions below. Note: In some cases, your documents might be attached to the Completed email. 1. Open the DocuSign Completed email.</code> | <code>[4.681269645690918, 9.322907447814941, 14.813400268554688, 20.356698989868164]</code> |
|
292 |
+
| <code>does hpv cause uti</code> | <code>So now you get in the acidic environment can hpv cause urinary tract infection for the area of the blockage of the fruits and fiber as a completely eliminate urinate at all. Spending money on prescription of antibiotics will kill all of the bacterial infection keeps happening to your veterinarian will work to cure the condition.</code> | <code>HPV & Urinary Tract Infections. Human Papillomavirus (HPV) is a group of viruses that can cause warts and cancers of the cervix, anus and genitals. Urinary tract infection (UTI) occurs when bacteria multiply within the bladder, causing pain and urinary urgency. (Thomas Northcut/Digital Vision/Getty Images) Other People Are Reading.</code> | <code>Some types of the HPV virus can infect the genital epithelial cells (skin and mucous membranes). Some types of HPV virus cause warts that appear on the genitals (vagina, vulva, penis, etc.) and anus of women and men.</code> | <code>Most women with HPV have no signs of infection. Since most HPV infections go away on their own within two years, many women never know they had an infection. Some HPV infections cause genital warts that can be seen or felt. The only way to know if you have HPV is to ask your health care provider to do an HPV test.</code> | <code>Genital warts are caused by low-risk types of human papillomavirus (HPV). These viruses may not cause warts in everyone. Women can get genital warts from sexual contact with someone who has HPV. Genital warts are spread by skin-to-skin contact, usually from contact with the warts. It can be spread by vaginal, anal, oral, or handgenital sexual contact. Genital warts will spread HPV while visible, and after recent treatment.</code> | <code>[0.5, 2.4958395957946777, 3.76273775100708, 4.114340305328369]</code> |
|
293 |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
294 |
```json
|
295 |
{
|
296 |
+
"loss": "SparseMarginMSELoss",
|
297 |
+
"document_regularizer_weight": 0.3,
|
298 |
+
"query_regularizer_weight": 0.5
|
299 |
}
|
300 |
```
|
301 |
|
|
|
303 |
#### Non-Default Hyperparameters
|
304 |
|
305 |
- `eval_strategy`: epoch
|
306 |
+
- `per_device_train_batch_size`: 48
|
307 |
+
- `per_device_eval_batch_size`: 48
|
308 |
+
- `learning_rate`: 8e-05
|
|
|
309 |
- `num_train_epochs`: 6
|
310 |
- `lr_scheduler_type`: cosine
|
311 |
- `warmup_ratio`: 0.025
|
312 |
- `fp16`: True
|
313 |
- `load_best_model_at_end`: True
|
314 |
- `optim`: adamw_torch_fused
|
|
|
|
|
315 |
|
316 |
#### All Hyperparameters
|
317 |
<details><summary>Click to expand</summary>
|
|
|
320 |
- `do_predict`: False
|
321 |
- `eval_strategy`: epoch
|
322 |
- `prediction_loss_only`: True
|
323 |
+
- `per_device_train_batch_size`: 48
|
324 |
+
- `per_device_eval_batch_size`: 48
|
325 |
- `per_gpu_train_batch_size`: None
|
326 |
- `per_gpu_eval_batch_size`: None
|
327 |
+
- `gradient_accumulation_steps`: 1
|
328 |
- `eval_accumulation_steps`: None
|
329 |
- `torch_empty_cache_steps`: None
|
330 |
+
- `learning_rate`: 8e-05
|
331 |
- `weight_decay`: 0.0
|
332 |
- `adam_beta1`: 0.9
|
333 |
- `adam_beta2`: 0.999
|
|
|
394 |
- `dataloader_persistent_workers`: False
|
395 |
- `skip_memory_metrics`: True
|
396 |
- `use_legacy_prediction_loop`: False
|
397 |
+
- `push_to_hub`: False
|
398 |
- `resume_from_checkpoint`: None
|
399 |
- `hub_model_id`: None
|
400 |
- `hub_strategy`: every_save
|
|
|
429 |
- `eval_use_gather_object`: False
|
430 |
- `average_tokens_across_devices`: False
|
431 |
- `prompts`: None
|
432 |
+
- `batch_sampler`: batch_sampler
|
433 |
- `multi_dataset_batch_sampler`: proportional
|
434 |
- `router_mapping`: {}
|
435 |
- `learning_rate_mapping`: {}
|
|
|
439 |
### Training Logs
|
440 |
| Epoch | Step | Training Loss | dot_ndcg@10 |
|
441 |
|:-------:|:---------:|:-------------:|:-----------:|
|
442 |
+
| 1.0 | 10336 | 16309.8824 | 0.6698 |
|
443 |
+
| 2.0 | 20672 | 14.4047 | 0.6920 |
|
444 |
+
| 3.0 | 31008 | 13.0742 | 0.7004 |
|
445 |
+
| 4.0 | 41344 | 11.8023 | 0.7060 |
|
446 |
+
| 5.0 | 51680 | 11.0464 | 0.7085 |
|
447 |
+
| **6.0** | **62016** | **10.6766** | **0.7094** |
|
448 |
|
449 |
* The bold row denotes the saved checkpoint.
|
450 |
|
451 |
### Framework Versions
|
452 |
+
- Python: 3.11.13
|
453 |
- Sentence Transformers: 5.0.0
|
454 |
+
- Transformers: 4.53.2
|
455 |
- PyTorch: 2.6.0+cu124
|
456 |
+
- Accelerate: 1.8.1
|
457 |
+
- Datasets: 4.0.0
|
458 |
+
- Tokenizers: 0.21.2
|
459 |
|
460 |
## Citation
|
461 |
|
|
|
487 |
}
|
488 |
```
|
489 |
|
490 |
+
#### SparseMarginMSELoss
|
491 |
```bibtex
|
492 |
+
@misc{hofstätter2021improving,
|
493 |
+
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
|
494 |
+
author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
|
495 |
+
year={2021},
|
496 |
+
eprint={2010.02666},
|
497 |
archivePrefix={arXiv},
|
498 |
+
primaryClass={cs.IR}
|
499 |
}
|
500 |
```
|
501 |
|
|
|
525 |
## Model Card Contact
|
526 |
|
527 |
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
528 |
+
-->
|
config.json
CHANGED
@@ -17,7 +17,7 @@
|
|
17 |
"pad_token_id": 0,
|
18 |
"position_embedding_type": "absolute",
|
19 |
"torch_dtype": "float32",
|
20 |
-
"transformers_version": "4.53.
|
21 |
"type_vocab_size": 2,
|
22 |
"use_cache": true,
|
23 |
"vocab_size": 30522
|
|
|
17 |
"pad_token_id": 0,
|
18 |
"position_embedding_type": "absolute",
|
19 |
"torch_dtype": "float32",
|
20 |
+
"transformers_version": "4.53.2",
|
21 |
"type_vocab_size": 2,
|
22 |
"use_cache": true,
|
23 |
"vocab_size": 30522
|
config_sentence_transformers.json
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"model_type": "SparseEncoder",
|
3 |
"__version__": {
|
4 |
"sentence_transformers": "5.0.0",
|
5 |
-
"transformers": "4.53.
|
6 |
"pytorch": "2.6.0+cu124"
|
7 |
},
|
8 |
"prompts": {
|
|
|
2 |
"model_type": "SparseEncoder",
|
3 |
"__version__": {
|
4 |
"sentence_transformers": "5.0.0",
|
5 |
+
"transformers": "4.53.2",
|
6 |
"pytorch": "2.6.0+cu124"
|
7 |
},
|
8 |
"prompts": {
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 17671560
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5578e5c58d8ff1c071f9ef9a555c2694c08a5b4c196697e4e199218dcc64ff0
|
3 |
size 17671560
|