--- library_name: peft base_model: samoline/e4b9359c-dc8e-432d-8196-1aeac1a57eaf tags: - axolotl - generated_from_trainer model-index: - name: 7e93c0c2-8f98-4c87-9f50-f0ab7b956f26 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: samoline/e4b9359c-dc8e-432d-8196-1aeac1a57eaf bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - e89d30b0c32ab0f9_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.05 enabled: true group_by_length: false rank_loss: true reference_model: NousResearch/Meta-Llama-3-8B-Instruct early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 0.9 group_by_length: false hub_model_id: sergioalves/7e93c0c2-8f98-4c87-9f50-f0ab7b956f26 hub_repo: null hub_strategy: end hub_token: null learning_rate: 2.0e-05 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/e89d30b0c32ab0f9_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3a71157a-f349-4323-bc8e-b254468fb49e wandb_project: s56-7 wandb_run: your_name wandb_runid: 3a71157a-f349-4323-bc8e-b254468fb49e warmup_steps: 10 weight_decay: 0.05 xformers_attention: false ```

# 7e93c0c2-8f98-4c87-9f50-f0ab7b956f26 This model is a fine-tuned version of [samoline/e4b9359c-dc8e-432d-8196-1aeac1a57eaf](https://huggingface.co/samoline/e4b9359c-dc8e-432d-8196-1aeac1a57eaf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9839 | 0.0002 | 1 | 1.1263 | | 1.0477 | 0.0121 | 50 | 1.0093 | | 0.8428 | 0.0243 | 100 | 1.0008 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1