File size: 4,014 Bytes
f30c444 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
library_name: peft
tags:
- generated_from_trainer
base_model: unsloth/gemma-2-9b-it
model-index:
- name: app/checkpoints/3ddcdf9e-6fa1-4457-a022-205287c5dbe4/tournament-tourn_21c0fa9e21db603d_20250808-cac3ab06-07bc-4f2f-98b9-9efb8a49cc1b-5EeL4R63
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.11.0.dev0`
```yaml
adapter: lora
base_model: unsloth/gemma-2-9b-it
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 3ddcdf9e-6fa1-4457-a022-205287c5dbe4_train_data.json
ds_type: json
format: custom
path: /workspace/axolotl/data
type:
field_input: input
field_instruction: instruct
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: null
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: null
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
loraplus_lr_embedding: 1.0e-06
loraplus_lr_ratio: 16
lr_scheduler: cosine
max_grad_norm: 1
max_steps: 1500
micro_batch_size: 2
mlflow_experiment_name: /workspace/axolotl/data/3ddcdf9e-6fa1-4457-a022-205287c5dbe4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 200
optimizer: adamw_torch_fused
output_dir: /app/checkpoints/3ddcdf9e-6fa1-4457-a022-205287c5dbe4/tournament-tourn_21c0fa9e21db603d_20250808-cac3ab06-07bc-4f2f-98b9-9efb8a49cc1b-5EeL4R63
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 300
save_total_limit: 10
saves_per_epoch: 0
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0
wandb_entity: null
wandb_mode: offline
wandb_name: 3ddcdf9e-6fa1-4457-a022-205287c5dbe4_tournament-tourn_21c0fa9e21db603d_20250808-cac3ab06-07bc-4f2f-98b9-9efb8a49cc1b-5EeL4R63
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3ddcdf9e-6fa1-4457-a022-205287c5dbe4_tournament-tourn_21c0fa9e21db603d_20250808-cac3ab06-07bc-4f2f-98b9-9efb8a49cc1b-5EeL4R63
warmup_steps: 150
weight_decay: 0
xformers_attention: null
```
</details><br>
# app/checkpoints/3ddcdf9e-6fa1-4457-a022-205287c5dbe4/tournament-tourn_21c0fa9e21db603d_20250808-cac3ab06-07bc-4f2f-98b9-9efb8a49cc1b-5EeL4R63
This model was trained from scratch on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 150
- training_steps: 1500
### Training results
### Framework versions
- PEFT 0.15.2
- Transformers 4.53.1
- Pytorch 2.5.1+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2 |