--- library_name: peft tags: - generated_from_trainer base_model: unsloth/gemma-2-9b-it model-index: - name: app/checkpoints/3ddcdf9e-6fa1-4457-a022-205287c5dbe4/tournament-tourn_21c0fa9e21db603d_20250808-cac3ab06-07bc-4f2f-98b9-9efb8a49cc1b-5EeL4R63 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.11.0.dev0` ```yaml adapter: lora base_model: unsloth/gemma-2-9b-it bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 3ddcdf9e-6fa1-4457-a022-205287c5dbe4_train_data.json ds_type: json format: custom path: /workspace/axolotl/data type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: null hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /workspace/axolotl/data/3ddcdf9e-6fa1-4457-a022-205287c5dbe4_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: /app/checkpoints/3ddcdf9e-6fa1-4457-a022-205287c5dbe4/tournament-tourn_21c0fa9e21db603d_20250808-cac3ab06-07bc-4f2f-98b9-9efb8a49cc1b-5EeL4R63 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 300 save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: offline wandb_name: 3ddcdf9e-6fa1-4457-a022-205287c5dbe4_tournament-tourn_21c0fa9e21db603d_20250808-cac3ab06-07bc-4f2f-98b9-9efb8a49cc1b-5EeL4R63 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3ddcdf9e-6fa1-4457-a022-205287c5dbe4_tournament-tourn_21c0fa9e21db603d_20250808-cac3ab06-07bc-4f2f-98b9-9efb8a49cc1b-5EeL4R63 warmup_steps: 150 weight_decay: 0 xformers_attention: null ```

# app/checkpoints/3ddcdf9e-6fa1-4457-a022-205287c5dbe4/tournament-tourn_21c0fa9e21db603d_20250808-cac3ab06-07bc-4f2f-98b9-9efb8a49cc1b-5EeL4R63 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 150 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.15.2 - Transformers 4.53.1 - Pytorch 2.5.1+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2