Add new SentenceTransformer model.
Browse files- README.md +253 -245
- model.safetensors +1 -1
README.md
CHANGED
@@ -27,54 +27,53 @@ tags:
|
|
27 |
- sentence-similarity
|
28 |
- feature-extraction
|
29 |
- generated_from_trainer
|
30 |
-
- dataset_size:
|
31 |
- loss:MatryoshkaLoss
|
32 |
- loss:MultipleNegativesRankingLoss
|
33 |
widget:
|
34 |
-
- source_sentence:
|
35 |
-
|
36 |
-
a part of the CCAR (Comprehensive Capital Analysis and Review) process. The scenarios
|
37 |
-
tested included a hypothetical severe global recession which, at its most stressful
|
38 |
-
point, reduces our Pre-Provision Net Revenue (PPNR) to negative levels for four
|
39 |
-
consecutive quarters.
|
40 |
sentences:
|
41 |
-
- What
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
subject to capital availability and financial conditions
|
50 |
sentences:
|
51 |
-
-
|
52 |
-
|
53 |
-
- What
|
54 |
-
-
|
55 |
-
|
56 |
-
|
|
|
|
|
57 |
sentences:
|
58 |
-
- What
|
59 |
-
-
|
60 |
-
-
|
61 |
-
- source_sentence:
|
62 |
-
|
63 |
-
for
|
64 |
-
including processors for computer systems and servers, integrated digital technology
|
65 |
-
platforms, and system-on-chip units for gateways.
|
66 |
sentences:
|
67 |
-
- What is
|
68 |
-
- What
|
69 |
-
- How much capital expenditure did Amazon.com report in 2025?
|
70 |
-
- source_sentence: In 2023, EnergyCorp declared a dividend of $2.5 per share.
|
71 |
-
sentences:
|
72 |
-
- How did Amazon’s shift to one-day prime delivery affect its operational costs
|
73 |
in 2023?
|
74 |
-
- What
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
model-index:
|
77 |
-
- name:
|
78 |
results:
|
79 |
- task:
|
80 |
type: information-retrieval
|
@@ -84,49 +83,49 @@ model-index:
|
|
84 |
type: dim_1024
|
85 |
metrics:
|
86 |
- type: cosine_accuracy@1
|
87 |
-
value: 0.
|
88 |
name: Cosine Accuracy@1
|
89 |
- type: cosine_accuracy@3
|
90 |
-
value: 0.
|
91 |
name: Cosine Accuracy@3
|
92 |
- type: cosine_accuracy@5
|
93 |
-
value: 0.
|
94 |
name: Cosine Accuracy@5
|
95 |
- type: cosine_accuracy@10
|
96 |
-
value: 0.
|
97 |
name: Cosine Accuracy@10
|
98 |
- type: cosine_precision@1
|
99 |
-
value: 0.
|
100 |
name: Cosine Precision@1
|
101 |
- type: cosine_precision@3
|
102 |
-
value: 0.
|
103 |
name: Cosine Precision@3
|
104 |
- type: cosine_precision@5
|
105 |
-
value: 0.
|
106 |
name: Cosine Precision@5
|
107 |
- type: cosine_precision@10
|
108 |
-
value: 0.
|
109 |
name: Cosine Precision@10
|
110 |
- type: cosine_recall@1
|
111 |
-
value: 0.
|
112 |
name: Cosine Recall@1
|
113 |
- type: cosine_recall@3
|
114 |
-
value: 0.
|
115 |
name: Cosine Recall@3
|
116 |
- type: cosine_recall@5
|
117 |
-
value: 0.
|
118 |
name: Cosine Recall@5
|
119 |
- type: cosine_recall@10
|
120 |
-
value: 0.
|
121 |
name: Cosine Recall@10
|
122 |
- type: cosine_ndcg@10
|
123 |
-
value: 0.
|
124 |
name: Cosine Ndcg@10
|
125 |
- type: cosine_mrr@10
|
126 |
-
value: 0.
|
127 |
name: Cosine Mrr@10
|
128 |
- type: cosine_map@100
|
129 |
-
value: 0.
|
130 |
name: Cosine Map@100
|
131 |
- task:
|
132 |
type: information-retrieval
|
@@ -136,49 +135,49 @@ model-index:
|
|
136 |
type: dim_768
|
137 |
metrics:
|
138 |
- type: cosine_accuracy@1
|
139 |
-
value: 0.
|
140 |
name: Cosine Accuracy@1
|
141 |
- type: cosine_accuracy@3
|
142 |
-
value: 0.
|
143 |
name: Cosine Accuracy@3
|
144 |
- type: cosine_accuracy@5
|
145 |
-
value: 0.
|
146 |
name: Cosine Accuracy@5
|
147 |
- type: cosine_accuracy@10
|
148 |
-
value: 0.
|
149 |
name: Cosine Accuracy@10
|
150 |
- type: cosine_precision@1
|
151 |
-
value: 0.
|
152 |
name: Cosine Precision@1
|
153 |
- type: cosine_precision@3
|
154 |
-
value: 0.
|
155 |
name: Cosine Precision@3
|
156 |
- type: cosine_precision@5
|
157 |
-
value: 0.
|
158 |
name: Cosine Precision@5
|
159 |
- type: cosine_precision@10
|
160 |
-
value: 0.
|
161 |
name: Cosine Precision@10
|
162 |
- type: cosine_recall@1
|
163 |
-
value: 0.
|
164 |
name: Cosine Recall@1
|
165 |
- type: cosine_recall@3
|
166 |
-
value: 0.
|
167 |
name: Cosine Recall@3
|
168 |
- type: cosine_recall@5
|
169 |
-
value: 0.
|
170 |
name: Cosine Recall@5
|
171 |
- type: cosine_recall@10
|
172 |
-
value: 0.
|
173 |
name: Cosine Recall@10
|
174 |
- type: cosine_ndcg@10
|
175 |
-
value: 0.
|
176 |
name: Cosine Ndcg@10
|
177 |
- type: cosine_mrr@10
|
178 |
-
value: 0.
|
179 |
name: Cosine Mrr@10
|
180 |
- type: cosine_map@100
|
181 |
-
value: 0.
|
182 |
name: Cosine Map@100
|
183 |
- task:
|
184 |
type: information-retrieval
|
@@ -188,49 +187,49 @@ model-index:
|
|
188 |
type: dim_512
|
189 |
metrics:
|
190 |
- type: cosine_accuracy@1
|
191 |
-
value: 0.
|
192 |
name: Cosine Accuracy@1
|
193 |
- type: cosine_accuracy@3
|
194 |
-
value: 0.
|
195 |
name: Cosine Accuracy@3
|
196 |
- type: cosine_accuracy@5
|
197 |
-
value: 0.
|
198 |
name: Cosine Accuracy@5
|
199 |
- type: cosine_accuracy@10
|
200 |
-
value: 0.
|
201 |
name: Cosine Accuracy@10
|
202 |
- type: cosine_precision@1
|
203 |
-
value: 0.
|
204 |
name: Cosine Precision@1
|
205 |
- type: cosine_precision@3
|
206 |
-
value: 0.
|
207 |
name: Cosine Precision@3
|
208 |
- type: cosine_precision@5
|
209 |
-
value: 0.
|
210 |
name: Cosine Precision@5
|
211 |
- type: cosine_precision@10
|
212 |
-
value: 0.
|
213 |
name: Cosine Precision@10
|
214 |
- type: cosine_recall@1
|
215 |
-
value: 0.
|
216 |
name: Cosine Recall@1
|
217 |
- type: cosine_recall@3
|
218 |
-
value: 0.
|
219 |
name: Cosine Recall@3
|
220 |
- type: cosine_recall@5
|
221 |
-
value: 0.
|
222 |
name: Cosine Recall@5
|
223 |
- type: cosine_recall@10
|
224 |
-
value: 0.
|
225 |
name: Cosine Recall@10
|
226 |
- type: cosine_ndcg@10
|
227 |
-
value: 0.
|
228 |
name: Cosine Ndcg@10
|
229 |
- type: cosine_mrr@10
|
230 |
-
value: 0.
|
231 |
name: Cosine Mrr@10
|
232 |
- type: cosine_map@100
|
233 |
-
value: 0.
|
234 |
name: Cosine Map@100
|
235 |
- task:
|
236 |
type: information-retrieval
|
@@ -240,49 +239,49 @@ model-index:
|
|
240 |
type: dim_256
|
241 |
metrics:
|
242 |
- type: cosine_accuracy@1
|
243 |
-
value: 0.
|
244 |
name: Cosine Accuracy@1
|
245 |
- type: cosine_accuracy@3
|
246 |
-
value: 0.
|
247 |
name: Cosine Accuracy@3
|
248 |
- type: cosine_accuracy@5
|
249 |
-
value: 0.
|
250 |
name: Cosine Accuracy@5
|
251 |
- type: cosine_accuracy@10
|
252 |
-
value: 0.
|
253 |
name: Cosine Accuracy@10
|
254 |
- type: cosine_precision@1
|
255 |
-
value: 0.
|
256 |
name: Cosine Precision@1
|
257 |
- type: cosine_precision@3
|
258 |
-
value: 0.
|
259 |
name: Cosine Precision@3
|
260 |
- type: cosine_precision@5
|
261 |
-
value: 0.
|
262 |
name: Cosine Precision@5
|
263 |
- type: cosine_precision@10
|
264 |
-
value: 0.
|
265 |
name: Cosine Precision@10
|
266 |
- type: cosine_recall@1
|
267 |
-
value: 0.
|
268 |
name: Cosine Recall@1
|
269 |
- type: cosine_recall@3
|
270 |
-
value: 0.
|
271 |
name: Cosine Recall@3
|
272 |
- type: cosine_recall@5
|
273 |
-
value: 0.
|
274 |
name: Cosine Recall@5
|
275 |
- type: cosine_recall@10
|
276 |
-
value: 0.
|
277 |
name: Cosine Recall@10
|
278 |
- type: cosine_ndcg@10
|
279 |
-
value: 0.
|
280 |
name: Cosine Ndcg@10
|
281 |
- type: cosine_mrr@10
|
282 |
-
value: 0.
|
283 |
name: Cosine Mrr@10
|
284 |
- type: cosine_map@100
|
285 |
-
value: 0.
|
286 |
name: Cosine Map@100
|
287 |
- task:
|
288 |
type: information-retrieval
|
@@ -292,49 +291,49 @@ model-index:
|
|
292 |
type: dim_128
|
293 |
metrics:
|
294 |
- type: cosine_accuracy@1
|
295 |
-
value: 0.
|
296 |
name: Cosine Accuracy@1
|
297 |
- type: cosine_accuracy@3
|
298 |
-
value: 0.
|
299 |
name: Cosine Accuracy@3
|
300 |
- type: cosine_accuracy@5
|
301 |
-
value: 0.
|
302 |
name: Cosine Accuracy@5
|
303 |
- type: cosine_accuracy@10
|
304 |
-
value: 0.
|
305 |
name: Cosine Accuracy@10
|
306 |
- type: cosine_precision@1
|
307 |
-
value: 0.
|
308 |
name: Cosine Precision@1
|
309 |
- type: cosine_precision@3
|
310 |
-
value: 0.
|
311 |
name: Cosine Precision@3
|
312 |
- type: cosine_precision@5
|
313 |
-
value: 0.
|
314 |
name: Cosine Precision@5
|
315 |
- type: cosine_precision@10
|
316 |
-
value: 0.
|
317 |
name: Cosine Precision@10
|
318 |
- type: cosine_recall@1
|
319 |
-
value: 0.
|
320 |
name: Cosine Recall@1
|
321 |
- type: cosine_recall@3
|
322 |
-
value: 0.
|
323 |
name: Cosine Recall@3
|
324 |
- type: cosine_recall@5
|
325 |
-
value: 0.
|
326 |
name: Cosine Recall@5
|
327 |
- type: cosine_recall@10
|
328 |
-
value: 0.
|
329 |
name: Cosine Recall@10
|
330 |
- type: cosine_ndcg@10
|
331 |
-
value: 0.
|
332 |
name: Cosine Ndcg@10
|
333 |
- type: cosine_mrr@10
|
334 |
-
value: 0.
|
335 |
name: Cosine Mrr@10
|
336 |
- type: cosine_map@100
|
337 |
-
value: 0.
|
338 |
name: Cosine Map@100
|
339 |
- task:
|
340 |
type: information-retrieval
|
@@ -344,53 +343,53 @@ model-index:
|
|
344 |
type: dim_64
|
345 |
metrics:
|
346 |
- type: cosine_accuracy@1
|
347 |
-
value: 0.
|
348 |
name: Cosine Accuracy@1
|
349 |
- type: cosine_accuracy@3
|
350 |
-
value: 0.
|
351 |
name: Cosine Accuracy@3
|
352 |
- type: cosine_accuracy@5
|
353 |
-
value: 0.
|
354 |
name: Cosine Accuracy@5
|
355 |
- type: cosine_accuracy@10
|
356 |
-
value: 0.
|
357 |
name: Cosine Accuracy@10
|
358 |
- type: cosine_precision@1
|
359 |
-
value: 0.
|
360 |
name: Cosine Precision@1
|
361 |
- type: cosine_precision@3
|
362 |
-
value: 0.
|
363 |
name: Cosine Precision@3
|
364 |
- type: cosine_precision@5
|
365 |
-
value: 0.
|
366 |
name: Cosine Precision@5
|
367 |
- type: cosine_precision@10
|
368 |
-
value: 0.
|
369 |
name: Cosine Precision@10
|
370 |
- type: cosine_recall@1
|
371 |
-
value: 0.
|
372 |
name: Cosine Recall@1
|
373 |
- type: cosine_recall@3
|
374 |
-
value: 0.
|
375 |
name: Cosine Recall@3
|
376 |
- type: cosine_recall@5
|
377 |
-
value: 0.
|
378 |
name: Cosine Recall@5
|
379 |
- type: cosine_recall@10
|
380 |
-
value: 0.
|
381 |
name: Cosine Recall@10
|
382 |
- type: cosine_ndcg@10
|
383 |
-
value: 0.
|
384 |
name: Cosine Ndcg@10
|
385 |
- type: cosine_mrr@10
|
386 |
-
value: 0.
|
387 |
name: Cosine Mrr@10
|
388 |
- type: cosine_map@100
|
389 |
-
value: 0.
|
390 |
name: Cosine Map@100
|
391 |
---
|
392 |
|
393 |
-
#
|
394 |
|
395 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
396 |
|
@@ -439,9 +438,9 @@ from sentence_transformers import SentenceTransformer
|
|
439 |
model = SentenceTransformer("rbhatia46/mxbai-embed-large-v1-financial-rag-matryoshka")
|
440 |
# Run inference
|
441 |
sentences = [
|
442 |
-
'
|
443 |
-
|
444 |
-
|
445 |
]
|
446 |
embeddings = model.encode(sentences)
|
447 |
print(embeddings.shape)
|
@@ -487,21 +486,21 @@ You can finetune this model on your own dataset.
|
|
487 |
|
488 |
| Metric | Value |
|
489 |
|:--------------------|:-----------|
|
490 |
-
| cosine_accuracy@1 | 0.
|
491 |
-
| cosine_accuracy@3 | 0.
|
492 |
-
| cosine_accuracy@5 | 0.
|
493 |
-
| cosine_accuracy@10 | 0.
|
494 |
-
| cosine_precision@1 | 0.
|
495 |
-
| cosine_precision@3 | 0.
|
496 |
-
| cosine_precision@5 | 0.
|
497 |
-
| cosine_precision@10 | 0.
|
498 |
-
| cosine_recall@1 | 0.
|
499 |
-
| cosine_recall@3 | 0.
|
500 |
-
| cosine_recall@5 | 0.
|
501 |
-
| cosine_recall@10 | 0.
|
502 |
-
| cosine_ndcg@10 | 0.
|
503 |
-
| cosine_mrr@10 | 0.
|
504 |
-
| **cosine_map@100** | **0.
|
505 |
|
506 |
#### Information Retrieval
|
507 |
* Dataset: `dim_768`
|
@@ -509,21 +508,21 @@ You can finetune this model on your own dataset.
|
|
509 |
|
510 |
| Metric | Value |
|
511 |
|:--------------------|:-----------|
|
512 |
-
| cosine_accuracy@1 | 0.
|
513 |
-
| cosine_accuracy@3 | 0.
|
514 |
-
| cosine_accuracy@5 | 0.
|
515 |
-
| cosine_accuracy@10 | 0.
|
516 |
-
| cosine_precision@1 | 0.
|
517 |
-
| cosine_precision@3 | 0.
|
518 |
-
| cosine_precision@5 | 0.
|
519 |
-
| cosine_precision@10 | 0.
|
520 |
-
| cosine_recall@1 | 0.
|
521 |
-
| cosine_recall@3 | 0.
|
522 |
-
| cosine_recall@5 | 0.
|
523 |
-
| cosine_recall@10 | 0.
|
524 |
-
| cosine_ndcg@10 | 0.
|
525 |
-
| cosine_mrr@10 | 0.
|
526 |
-
| **cosine_map@100** | **0.
|
527 |
|
528 |
#### Information Retrieval
|
529 |
* Dataset: `dim_512`
|
@@ -531,43 +530,43 @@ You can finetune this model on your own dataset.
|
|
531 |
|
532 |
| Metric | Value |
|
533 |
|:--------------------|:-----------|
|
534 |
-
| cosine_accuracy@1 | 0.
|
535 |
-
| cosine_accuracy@3 | 0.
|
536 |
-
| cosine_accuracy@5 | 0.
|
537 |
-
| cosine_accuracy@10 | 0.
|
538 |
-
| cosine_precision@1 | 0.
|
539 |
-
| cosine_precision@3 | 0.
|
540 |
-
| cosine_precision@5 | 0.
|
541 |
-
| cosine_precision@10 | 0.
|
542 |
-
| cosine_recall@1 | 0.
|
543 |
-
| cosine_recall@3 | 0.
|
544 |
-
| cosine_recall@5 | 0.
|
545 |
-
| cosine_recall@10 | 0.
|
546 |
-
| cosine_ndcg@10 | 0.
|
547 |
-
| cosine_mrr@10 | 0.
|
548 |
-
| **cosine_map@100** | **0.
|
549 |
|
550 |
#### Information Retrieval
|
551 |
* Dataset: `dim_256`
|
552 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
553 |
|
554 |
-
| Metric | Value
|
555 |
-
|
556 |
-
| cosine_accuracy@1 | 0.
|
557 |
-
| cosine_accuracy@3 | 0.
|
558 |
-
| cosine_accuracy@5 | 0.
|
559 |
-
| cosine_accuracy@10 | 0.
|
560 |
-
| cosine_precision@1 | 0.
|
561 |
-
| cosine_precision@3 | 0.
|
562 |
-
| cosine_precision@5 | 0.
|
563 |
-
| cosine_precision@10 | 0.
|
564 |
-
| cosine_recall@1 | 0.
|
565 |
-
| cosine_recall@3 | 0.
|
566 |
-
| cosine_recall@5 | 0.
|
567 |
-
| cosine_recall@10 | 0.
|
568 |
-
| cosine_ndcg@10 | 0.
|
569 |
-
| cosine_mrr@10 | 0.
|
570 |
-
| **cosine_map@100** | **0.
|
571 |
|
572 |
#### Information Retrieval
|
573 |
* Dataset: `dim_128`
|
@@ -575,43 +574,43 @@ You can finetune this model on your own dataset.
|
|
575 |
|
576 |
| Metric | Value |
|
577 |
|:--------------------|:-----------|
|
578 |
-
| cosine_accuracy@1 | 0.
|
579 |
-
| cosine_accuracy@3 | 0.
|
580 |
-
| cosine_accuracy@5 | 0.
|
581 |
-
| cosine_accuracy@10 | 0.
|
582 |
-
| cosine_precision@1 | 0.
|
583 |
-
| cosine_precision@3 | 0.
|
584 |
-
| cosine_precision@5 | 0.
|
585 |
| cosine_precision@10 | 0.0985 |
|
586 |
-
| cosine_recall@1 | 0.
|
587 |
-
| cosine_recall@3 | 0.
|
588 |
-
| cosine_recall@5 | 0.
|
589 |
-
| cosine_recall@10 | 0.
|
590 |
-
| cosine_ndcg@10 | 0.
|
591 |
-
| cosine_mrr@10 | 0.
|
592 |
-
| **cosine_map@100** | **0.
|
593 |
|
594 |
#### Information Retrieval
|
595 |
* Dataset: `dim_64`
|
596 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
597 |
|
598 |
-
| Metric | Value
|
599 |
-
|
600 |
-
| cosine_accuracy@1 | 0.
|
601 |
-
| cosine_accuracy@3 | 0.
|
602 |
-
| cosine_accuracy@5 | 0.
|
603 |
-
| cosine_accuracy@10 | 0.
|
604 |
-
| cosine_precision@1 | 0.
|
605 |
-
| cosine_precision@3 | 0.
|
606 |
-
| cosine_precision@5 | 0.
|
607 |
-
| cosine_precision@10 | 0.
|
608 |
-
| cosine_recall@1 | 0.
|
609 |
-
| cosine_recall@3 | 0.
|
610 |
-
| cosine_recall@5 | 0.
|
611 |
-
| cosine_recall@10 | 0.
|
612 |
-
| cosine_ndcg@10 | 0.
|
613 |
-
| cosine_mrr@10 | 0.
|
614 |
-
| **cosine_map@100** | **0.
|
615 |
|
616 |
<!--
|
617 |
## Bias, Risks and Limitations
|
@@ -632,19 +631,19 @@ You can finetune this model on your own dataset.
|
|
632 |
#### Unnamed Dataset
|
633 |
|
634 |
|
635 |
-
* Size:
|
636 |
* Columns: <code>positive</code> and <code>anchor</code>
|
637 |
* Approximate statistics based on the first 1000 samples:
|
638 |
-
| | positive
|
639 |
-
|
640 |
-
| type | string
|
641 |
-
| details | <ul><li>min:
|
642 |
* Samples:
|
643 |
-
| positive
|
644 |
-
|
645 |
-
| <code>
|
646 |
-
| <code>
|
647 |
-
| <code>
|
648 |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
649 |
```json
|
650 |
{
|
@@ -677,7 +676,7 @@ You can finetune this model on your own dataset.
|
|
677 |
- `per_device_eval_batch_size`: 16
|
678 |
- `gradient_accumulation_steps`: 16
|
679 |
- `learning_rate`: 2e-05
|
680 |
-
- `num_train_epochs`:
|
681 |
- `lr_scheduler_type`: cosine
|
682 |
- `warmup_ratio`: 0.1
|
683 |
- `bf16`: True
|
@@ -705,7 +704,7 @@ You can finetune this model on your own dataset.
|
|
705 |
- `adam_beta2`: 0.999
|
706 |
- `adam_epsilon`: 1e-08
|
707 |
- `max_grad_norm`: 1.0
|
708 |
-
- `num_train_epochs`:
|
709 |
- `max_steps`: -1
|
710 |
- `lr_scheduler_type`: cosine
|
711 |
- `lr_scheduler_kwargs`: {}
|
@@ -801,12 +800,21 @@ You can finetune this model on your own dataset.
|
|
801 |
</details>
|
802 |
|
803 |
### Training Logs
|
804 |
-
| Epoch | Step
|
805 |
-
|
806 |
-
| 0.
|
807 |
-
| 1.
|
808 |
-
|
|
809 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
810 |
|
811 |
* The bold row denotes the saved checkpoint.
|
812 |
|
@@ -815,7 +823,7 @@ You can finetune this model on your own dataset.
|
|
815 |
- Sentence Transformers: 3.0.1
|
816 |
- Transformers: 4.41.2
|
817 |
- PyTorch: 2.1.2+cu121
|
818 |
-
- Accelerate: 0.
|
819 |
- Datasets: 2.19.1
|
820 |
- Tokenizers: 0.19.1
|
821 |
|
|
|
27 |
- sentence-similarity
|
28 |
- feature-extraction
|
29 |
- generated_from_trainer
|
30 |
+
- dataset_size:3550
|
31 |
- loss:MatryoshkaLoss
|
32 |
- loss:MultipleNegativesRankingLoss
|
33 |
widget:
|
34 |
+
- source_sentence: At the end of 2023, Alphabet Inc. reported total debts amounting
|
35 |
+
to $14.2 billion, compared to $10.9 billion at the end of 2022.
|
|
|
|
|
|
|
|
|
36 |
sentences:
|
37 |
+
- What was the total debt of Alphabet Inc. as of the end of 2023?
|
38 |
+
- What was ExxonMobil's contribution to the energy production in the Energy sector
|
39 |
+
during 2020?
|
40 |
+
- Describe Amazon's revenue growth in 2023?
|
41 |
+
- source_sentence: In 2022, Pfizer strategically managed cash flow from investments
|
42 |
+
by utilizing operating cash flow, issuing new debt, and through the monetization
|
43 |
+
of certain non-core assets. This approach of diversifying the source of funding
|
44 |
+
for investments was done to minimize risk and uncertainty in economic conditions.
|
|
|
45 |
sentences:
|
46 |
+
- How much capital expenditure did AUX Energy invest in renewable energy projects
|
47 |
+
in 2022?
|
48 |
+
- What effect did the 2023 market downturn have on Amazon's retail and cloud segments?
|
49 |
+
- How did Pfizer manage cash flows from investments in 2022?
|
50 |
+
- source_sentence: The primary revenue generators for JPMorgan Chase for the fiscal
|
51 |
+
year 2023 were the Corporate & Investment Bank (CIB) and the Asset & Wealth Management
|
52 |
+
(AWM) sectors. The CIB sector benefited from a rise in merger and acquisition
|
53 |
+
activities, while AWM saw large net inflows.
|
54 |
sentences:
|
55 |
+
- What is General Electric's strategic priority for its Aviation business segment?
|
56 |
+
- Which sectors contributed the most to the revenue of JPMorgan Chase for FY 2023?
|
57 |
+
- What is the principal activity of Apple Inc.?
|
58 |
+
- source_sentence: For the fiscal year 2023, Microsoft's Intelligent Cloud segment
|
59 |
+
generated revenues of $58 billion, demonstrating solid growth fueled by strong
|
60 |
+
demand for cloud services and server products.
|
|
|
|
|
61 |
sentences:
|
62 |
+
- What is the primary strategy of McDonald’s to drive growth in the future?
|
63 |
+
- What impact did the increase in gold prices have on Newmont Corporation's revenue
|
|
|
|
|
|
|
|
|
64 |
in 2023?
|
65 |
+
- What was the revenue generated by Microsoft's Intelligent Cloud segment for fiscal
|
66 |
+
year 2023?
|
67 |
+
- source_sentence: Microsoft, in their latest press release, revealed that they are
|
68 |
+
anticipating a revenue growth of approximately 12% for the fiscal year ending
|
69 |
+
in 2024.
|
70 |
+
sentences:
|
71 |
+
- What is Microsoft's projected revenue growth for fiscal year 2024?
|
72 |
+
- What is the fair value of equity method investments of Microsoft in the fiscal
|
73 |
+
year 2025?
|
74 |
+
- What was the impact of COVID-19 on Zoom's profits?
|
75 |
model-index:
|
76 |
+
- name: mxbai-embed-large-v1-financial-rag-matryoshka
|
77 |
results:
|
78 |
- task:
|
79 |
type: information-retrieval
|
|
|
83 |
type: dim_1024
|
84 |
metrics:
|
85 |
- type: cosine_accuracy@1
|
86 |
+
value: 0.8455696202531645
|
87 |
name: Cosine Accuracy@1
|
88 |
- type: cosine_accuracy@3
|
89 |
+
value: 0.9392405063291139
|
90 |
name: Cosine Accuracy@3
|
91 |
- type: cosine_accuracy@5
|
92 |
+
value: 0.9670886075949368
|
93 |
name: Cosine Accuracy@5
|
94 |
- type: cosine_accuracy@10
|
95 |
+
value: 0.9898734177215189
|
96 |
name: Cosine Accuracy@10
|
97 |
- type: cosine_precision@1
|
98 |
+
value: 0.8455696202531645
|
99 |
name: Cosine Precision@1
|
100 |
- type: cosine_precision@3
|
101 |
+
value: 0.31308016877637135
|
102 |
name: Cosine Precision@3
|
103 |
- type: cosine_precision@5
|
104 |
+
value: 0.19341772151898737
|
105 |
name: Cosine Precision@5
|
106 |
- type: cosine_precision@10
|
107 |
+
value: 0.0989873417721519
|
108 |
name: Cosine Precision@10
|
109 |
- type: cosine_recall@1
|
110 |
+
value: 0.8455696202531645
|
111 |
name: Cosine Recall@1
|
112 |
- type: cosine_recall@3
|
113 |
+
value: 0.9392405063291139
|
114 |
name: Cosine Recall@3
|
115 |
- type: cosine_recall@5
|
116 |
+
value: 0.9670886075949368
|
117 |
name: Cosine Recall@5
|
118 |
- type: cosine_recall@10
|
119 |
+
value: 0.9898734177215189
|
120 |
name: Cosine Recall@10
|
121 |
- type: cosine_ndcg@10
|
122 |
+
value: 0.9212281141643793
|
123 |
name: Cosine Ndcg@10
|
124 |
- type: cosine_mrr@10
|
125 |
+
value: 0.898873819570022
|
126 |
name: Cosine Mrr@10
|
127 |
- type: cosine_map@100
|
128 |
+
value: 0.8993853803492357
|
129 |
name: Cosine Map@100
|
130 |
- task:
|
131 |
type: information-retrieval
|
|
|
135 |
type: dim_768
|
136 |
metrics:
|
137 |
- type: cosine_accuracy@1
|
138 |
+
value: 0.8455696202531645
|
139 |
name: Cosine Accuracy@1
|
140 |
- type: cosine_accuracy@3
|
141 |
+
value: 0.9392405063291139
|
142 |
name: Cosine Accuracy@3
|
143 |
- type: cosine_accuracy@5
|
144 |
+
value: 0.9670886075949368
|
145 |
name: Cosine Accuracy@5
|
146 |
- type: cosine_accuracy@10
|
147 |
+
value: 0.9898734177215189
|
148 |
name: Cosine Accuracy@10
|
149 |
- type: cosine_precision@1
|
150 |
+
value: 0.8455696202531645
|
151 |
name: Cosine Precision@1
|
152 |
- type: cosine_precision@3
|
153 |
+
value: 0.3130801687763713
|
154 |
name: Cosine Precision@3
|
155 |
- type: cosine_precision@5
|
156 |
+
value: 0.1934177215189873
|
157 |
name: Cosine Precision@5
|
158 |
- type: cosine_precision@10
|
159 |
+
value: 0.0989873417721519
|
160 |
name: Cosine Precision@10
|
161 |
- type: cosine_recall@1
|
162 |
+
value: 0.8455696202531645
|
163 |
name: Cosine Recall@1
|
164 |
- type: cosine_recall@3
|
165 |
+
value: 0.9392405063291139
|
166 |
name: Cosine Recall@3
|
167 |
- type: cosine_recall@5
|
168 |
+
value: 0.9670886075949368
|
169 |
name: Cosine Recall@5
|
170 |
- type: cosine_recall@10
|
171 |
+
value: 0.9898734177215189
|
172 |
name: Cosine Recall@10
|
173 |
- type: cosine_ndcg@10
|
174 |
+
value: 0.9217284365901642
|
175 |
name: Cosine Ndcg@10
|
176 |
- type: cosine_mrr@10
|
177 |
+
value: 0.8994826200522402
|
178 |
name: Cosine Mrr@10
|
179 |
- type: cosine_map@100
|
180 |
+
value: 0.8999494134557425
|
181 |
name: Cosine Map@100
|
182 |
- task:
|
183 |
type: information-retrieval
|
|
|
187 |
type: dim_512
|
188 |
metrics:
|
189 |
- type: cosine_accuracy@1
|
190 |
+
value: 0.8405063291139241
|
191 |
name: Cosine Accuracy@1
|
192 |
- type: cosine_accuracy@3
|
193 |
+
value: 0.9367088607594937
|
194 |
name: Cosine Accuracy@3
|
195 |
- type: cosine_accuracy@5
|
196 |
+
value: 0.9645569620253165
|
197 |
name: Cosine Accuracy@5
|
198 |
- type: cosine_accuracy@10
|
199 |
+
value: 0.9898734177215189
|
200 |
name: Cosine Accuracy@10
|
201 |
- type: cosine_precision@1
|
202 |
+
value: 0.8405063291139241
|
203 |
name: Cosine Precision@1
|
204 |
- type: cosine_precision@3
|
205 |
+
value: 0.31223628691983124
|
206 |
name: Cosine Precision@3
|
207 |
- type: cosine_precision@5
|
208 |
+
value: 0.19291139240506328
|
209 |
name: Cosine Precision@5
|
210 |
- type: cosine_precision@10
|
211 |
+
value: 0.0989873417721519
|
212 |
name: Cosine Precision@10
|
213 |
- type: cosine_recall@1
|
214 |
+
value: 0.8405063291139241
|
215 |
name: Cosine Recall@1
|
216 |
- type: cosine_recall@3
|
217 |
+
value: 0.9367088607594937
|
218 |
name: Cosine Recall@3
|
219 |
- type: cosine_recall@5
|
220 |
+
value: 0.9645569620253165
|
221 |
name: Cosine Recall@5
|
222 |
- type: cosine_recall@10
|
223 |
+
value: 0.9898734177215189
|
224 |
name: Cosine Recall@10
|
225 |
- type: cosine_ndcg@10
|
226 |
+
value: 0.9186273598847787
|
227 |
name: Cosine Ndcg@10
|
228 |
- type: cosine_mrr@10
|
229 |
+
value: 0.8954631303998389
|
230 |
name: Cosine Mrr@10
|
231 |
- type: cosine_map@100
|
232 |
+
value: 0.8958871142668611
|
233 |
name: Cosine Map@100
|
234 |
- task:
|
235 |
type: information-retrieval
|
|
|
239 |
type: dim_256
|
240 |
metrics:
|
241 |
- type: cosine_accuracy@1
|
242 |
+
value: 0.8455696202531645
|
243 |
name: Cosine Accuracy@1
|
244 |
- type: cosine_accuracy@3
|
245 |
+
value: 0.9392405063291139
|
246 |
name: Cosine Accuracy@3
|
247 |
- type: cosine_accuracy@5
|
248 |
+
value: 0.9645569620253165
|
249 |
name: Cosine Accuracy@5
|
250 |
- type: cosine_accuracy@10
|
251 |
+
value: 0.9898734177215189
|
252 |
name: Cosine Accuracy@10
|
253 |
- type: cosine_precision@1
|
254 |
+
value: 0.8455696202531645
|
255 |
name: Cosine Precision@1
|
256 |
- type: cosine_precision@3
|
257 |
+
value: 0.3130801687763713
|
258 |
name: Cosine Precision@3
|
259 |
- type: cosine_precision@5
|
260 |
+
value: 0.19291139240506328
|
261 |
name: Cosine Precision@5
|
262 |
- type: cosine_precision@10
|
263 |
+
value: 0.0989873417721519
|
264 |
name: Cosine Precision@10
|
265 |
- type: cosine_recall@1
|
266 |
+
value: 0.8455696202531645
|
267 |
name: Cosine Recall@1
|
268 |
- type: cosine_recall@3
|
269 |
+
value: 0.9392405063291139
|
270 |
name: Cosine Recall@3
|
271 |
- type: cosine_recall@5
|
272 |
+
value: 0.9645569620253165
|
273 |
name: Cosine Recall@5
|
274 |
- type: cosine_recall@10
|
275 |
+
value: 0.9898734177215189
|
276 |
name: Cosine Recall@10
|
277 |
- type: cosine_ndcg@10
|
278 |
+
value: 0.9201161947922436
|
279 |
name: Cosine Ndcg@10
|
280 |
- type: cosine_mrr@10
|
281 |
+
value: 0.8975597749648381
|
282 |
name: Cosine Mrr@10
|
283 |
- type: cosine_map@100
|
284 |
+
value: 0.8979721416614026
|
285 |
name: Cosine Map@100
|
286 |
- task:
|
287 |
type: information-retrieval
|
|
|
291 |
type: dim_128
|
292 |
metrics:
|
293 |
- type: cosine_accuracy@1
|
294 |
+
value: 0.8405063291139241
|
295 |
name: Cosine Accuracy@1
|
296 |
- type: cosine_accuracy@3
|
297 |
+
value: 0.9417721518987342
|
298 |
name: Cosine Accuracy@3
|
299 |
- type: cosine_accuracy@5
|
300 |
+
value: 0.9645569620253165
|
301 |
name: Cosine Accuracy@5
|
302 |
- type: cosine_accuracy@10
|
303 |
+
value: 0.9848101265822785
|
304 |
name: Cosine Accuracy@10
|
305 |
- type: cosine_precision@1
|
306 |
+
value: 0.8405063291139241
|
307 |
name: Cosine Precision@1
|
308 |
- type: cosine_precision@3
|
309 |
+
value: 0.3139240506329114
|
310 |
name: Cosine Precision@3
|
311 |
- type: cosine_precision@5
|
312 |
+
value: 0.19291139240506328
|
313 |
name: Cosine Precision@5
|
314 |
- type: cosine_precision@10
|
315 |
+
value: 0.09848101265822784
|
316 |
name: Cosine Precision@10
|
317 |
- type: cosine_recall@1
|
318 |
+
value: 0.8405063291139241
|
319 |
name: Cosine Recall@1
|
320 |
- type: cosine_recall@3
|
321 |
+
value: 0.9417721518987342
|
322 |
name: Cosine Recall@3
|
323 |
- type: cosine_recall@5
|
324 |
+
value: 0.9645569620253165
|
325 |
name: Cosine Recall@5
|
326 |
- type: cosine_recall@10
|
327 |
+
value: 0.9848101265822785
|
328 |
name: Cosine Recall@10
|
329 |
- type: cosine_ndcg@10
|
330 |
+
value: 0.9170562815583235
|
331 |
name: Cosine Ndcg@10
|
332 |
- type: cosine_mrr@10
|
333 |
+
value: 0.8948693992364878
|
334 |
name: Cosine Mrr@10
|
335 |
- type: cosine_map@100
|
336 |
+
value: 0.8957325656059834
|
337 |
name: Cosine Map@100
|
338 |
- task:
|
339 |
type: information-retrieval
|
|
|
343 |
type: dim_64
|
344 |
metrics:
|
345 |
- type: cosine_accuracy@1
|
346 |
+
value: 0.8405063291139241
|
347 |
name: Cosine Accuracy@1
|
348 |
- type: cosine_accuracy@3
|
349 |
+
value: 0.9316455696202531
|
350 |
name: Cosine Accuracy@3
|
351 |
- type: cosine_accuracy@5
|
352 |
+
value: 0.9569620253164557
|
353 |
name: Cosine Accuracy@5
|
354 |
- type: cosine_accuracy@10
|
355 |
+
value: 0.9822784810126582
|
356 |
name: Cosine Accuracy@10
|
357 |
- type: cosine_precision@1
|
358 |
+
value: 0.8405063291139241
|
359 |
name: Cosine Precision@1
|
360 |
- type: cosine_precision@3
|
361 |
+
value: 0.3105485232067511
|
362 |
name: Cosine Precision@3
|
363 |
- type: cosine_precision@5
|
364 |
+
value: 0.19139240506329114
|
365 |
name: Cosine Precision@5
|
366 |
- type: cosine_precision@10
|
367 |
+
value: 0.09822784810126582
|
368 |
name: Cosine Precision@10
|
369 |
- type: cosine_recall@1
|
370 |
+
value: 0.8405063291139241
|
371 |
name: Cosine Recall@1
|
372 |
- type: cosine_recall@3
|
373 |
+
value: 0.9316455696202531
|
374 |
name: Cosine Recall@3
|
375 |
- type: cosine_recall@5
|
376 |
+
value: 0.9569620253164557
|
377 |
name: Cosine Recall@5
|
378 |
- type: cosine_recall@10
|
379 |
+
value: 0.9822784810126582
|
380 |
name: Cosine Recall@10
|
381 |
- type: cosine_ndcg@10
|
382 |
+
value: 0.9153318022971121
|
383 |
name: Cosine Ndcg@10
|
384 |
- type: cosine_mrr@10
|
385 |
+
value: 0.8934589109905566
|
386 |
name: Cosine Mrr@10
|
387 |
- type: cosine_map@100
|
388 |
+
value: 0.8943102728098851
|
389 |
name: Cosine Map@100
|
390 |
---
|
391 |
|
392 |
+
# mxbai-embed-large-v1-financial-rag-matryoshka
|
393 |
|
394 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
395 |
|
|
|
438 |
model = SentenceTransformer("rbhatia46/mxbai-embed-large-v1-financial-rag-matryoshka")
|
439 |
# Run inference
|
440 |
sentences = [
|
441 |
+
'Microsoft, in their latest press release, revealed that they are anticipating a revenue growth of approximately 12% for the fiscal year ending in 2024.',
|
442 |
+
"What is Microsoft's projected revenue growth for fiscal year 2024?",
|
443 |
+
"What was the impact of COVID-19 on Zoom's profits?",
|
444 |
]
|
445 |
embeddings = model.encode(sentences)
|
446 |
print(embeddings.shape)
|
|
|
486 |
|
487 |
| Metric | Value |
|
488 |
|:--------------------|:-----------|
|
489 |
+
| cosine_accuracy@1 | 0.8456 |
|
490 |
+
| cosine_accuracy@3 | 0.9392 |
|
491 |
+
| cosine_accuracy@5 | 0.9671 |
|
492 |
+
| cosine_accuracy@10 | 0.9899 |
|
493 |
+
| cosine_precision@1 | 0.8456 |
|
494 |
+
| cosine_precision@3 | 0.3131 |
|
495 |
+
| cosine_precision@5 | 0.1934 |
|
496 |
+
| cosine_precision@10 | 0.099 |
|
497 |
+
| cosine_recall@1 | 0.8456 |
|
498 |
+
| cosine_recall@3 | 0.9392 |
|
499 |
+
| cosine_recall@5 | 0.9671 |
|
500 |
+
| cosine_recall@10 | 0.9899 |
|
501 |
+
| cosine_ndcg@10 | 0.9212 |
|
502 |
+
| cosine_mrr@10 | 0.8989 |
|
503 |
+
| **cosine_map@100** | **0.8994** |
|
504 |
|
505 |
#### Information Retrieval
|
506 |
* Dataset: `dim_768`
|
|
|
508 |
|
509 |
| Metric | Value |
|
510 |
|:--------------------|:-----------|
|
511 |
+
| cosine_accuracy@1 | 0.8456 |
|
512 |
+
| cosine_accuracy@3 | 0.9392 |
|
513 |
+
| cosine_accuracy@5 | 0.9671 |
|
514 |
+
| cosine_accuracy@10 | 0.9899 |
|
515 |
+
| cosine_precision@1 | 0.8456 |
|
516 |
+
| cosine_precision@3 | 0.3131 |
|
517 |
+
| cosine_precision@5 | 0.1934 |
|
518 |
+
| cosine_precision@10 | 0.099 |
|
519 |
+
| cosine_recall@1 | 0.8456 |
|
520 |
+
| cosine_recall@3 | 0.9392 |
|
521 |
+
| cosine_recall@5 | 0.9671 |
|
522 |
+
| cosine_recall@10 | 0.9899 |
|
523 |
+
| cosine_ndcg@10 | 0.9217 |
|
524 |
+
| cosine_mrr@10 | 0.8995 |
|
525 |
+
| **cosine_map@100** | **0.8999** |
|
526 |
|
527 |
#### Information Retrieval
|
528 |
* Dataset: `dim_512`
|
|
|
530 |
|
531 |
| Metric | Value |
|
532 |
|:--------------------|:-----------|
|
533 |
+
| cosine_accuracy@1 | 0.8405 |
|
534 |
+
| cosine_accuracy@3 | 0.9367 |
|
535 |
+
| cosine_accuracy@5 | 0.9646 |
|
536 |
+
| cosine_accuracy@10 | 0.9899 |
|
537 |
+
| cosine_precision@1 | 0.8405 |
|
538 |
+
| cosine_precision@3 | 0.3122 |
|
539 |
+
| cosine_precision@5 | 0.1929 |
|
540 |
+
| cosine_precision@10 | 0.099 |
|
541 |
+
| cosine_recall@1 | 0.8405 |
|
542 |
+
| cosine_recall@3 | 0.9367 |
|
543 |
+
| cosine_recall@5 | 0.9646 |
|
544 |
+
| cosine_recall@10 | 0.9899 |
|
545 |
+
| cosine_ndcg@10 | 0.9186 |
|
546 |
+
| cosine_mrr@10 | 0.8955 |
|
547 |
+
| **cosine_map@100** | **0.8959** |
|
548 |
|
549 |
#### Information Retrieval
|
550 |
* Dataset: `dim_256`
|
551 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
552 |
|
553 |
+
| Metric | Value |
|
554 |
+
|:--------------------|:----------|
|
555 |
+
| cosine_accuracy@1 | 0.8456 |
|
556 |
+
| cosine_accuracy@3 | 0.9392 |
|
557 |
+
| cosine_accuracy@5 | 0.9646 |
|
558 |
+
| cosine_accuracy@10 | 0.9899 |
|
559 |
+
| cosine_precision@1 | 0.8456 |
|
560 |
+
| cosine_precision@3 | 0.3131 |
|
561 |
+
| cosine_precision@5 | 0.1929 |
|
562 |
+
| cosine_precision@10 | 0.099 |
|
563 |
+
| cosine_recall@1 | 0.8456 |
|
564 |
+
| cosine_recall@3 | 0.9392 |
|
565 |
+
| cosine_recall@5 | 0.9646 |
|
566 |
+
| cosine_recall@10 | 0.9899 |
|
567 |
+
| cosine_ndcg@10 | 0.9201 |
|
568 |
+
| cosine_mrr@10 | 0.8976 |
|
569 |
+
| **cosine_map@100** | **0.898** |
|
570 |
|
571 |
#### Information Retrieval
|
572 |
* Dataset: `dim_128`
|
|
|
574 |
|
575 |
| Metric | Value |
|
576 |
|:--------------------|:-----------|
|
577 |
+
| cosine_accuracy@1 | 0.8405 |
|
578 |
+
| cosine_accuracy@3 | 0.9418 |
|
579 |
+
| cosine_accuracy@5 | 0.9646 |
|
580 |
+
| cosine_accuracy@10 | 0.9848 |
|
581 |
+
| cosine_precision@1 | 0.8405 |
|
582 |
+
| cosine_precision@3 | 0.3139 |
|
583 |
+
| cosine_precision@5 | 0.1929 |
|
584 |
| cosine_precision@10 | 0.0985 |
|
585 |
+
| cosine_recall@1 | 0.8405 |
|
586 |
+
| cosine_recall@3 | 0.9418 |
|
587 |
+
| cosine_recall@5 | 0.9646 |
|
588 |
+
| cosine_recall@10 | 0.9848 |
|
589 |
+
| cosine_ndcg@10 | 0.9171 |
|
590 |
+
| cosine_mrr@10 | 0.8949 |
|
591 |
+
| **cosine_map@100** | **0.8957** |
|
592 |
|
593 |
#### Information Retrieval
|
594 |
* Dataset: `dim_64`
|
595 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
596 |
|
597 |
+
| Metric | Value |
|
598 |
+
|:--------------------|:-----------|
|
599 |
+
| cosine_accuracy@1 | 0.8405 |
|
600 |
+
| cosine_accuracy@3 | 0.9316 |
|
601 |
+
| cosine_accuracy@5 | 0.957 |
|
602 |
+
| cosine_accuracy@10 | 0.9823 |
|
603 |
+
| cosine_precision@1 | 0.8405 |
|
604 |
+
| cosine_precision@3 | 0.3105 |
|
605 |
+
| cosine_precision@5 | 0.1914 |
|
606 |
+
| cosine_precision@10 | 0.0982 |
|
607 |
+
| cosine_recall@1 | 0.8405 |
|
608 |
+
| cosine_recall@3 | 0.9316 |
|
609 |
+
| cosine_recall@5 | 0.957 |
|
610 |
+
| cosine_recall@10 | 0.9823 |
|
611 |
+
| cosine_ndcg@10 | 0.9153 |
|
612 |
+
| cosine_mrr@10 | 0.8935 |
|
613 |
+
| **cosine_map@100** | **0.8943** |
|
614 |
|
615 |
<!--
|
616 |
## Bias, Risks and Limitations
|
|
|
631 |
#### Unnamed Dataset
|
632 |
|
633 |
|
634 |
+
* Size: 3,550 training samples
|
635 |
* Columns: <code>positive</code> and <code>anchor</code>
|
636 |
* Approximate statistics based on the first 1000 samples:
|
637 |
+
| | positive | anchor |
|
638 |
+
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
639 |
+
| type | string | string |
|
640 |
+
| details | <ul><li>min: 17 tokens</li><li>mean: 44.69 tokens</li><li>max: 105 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 18.26 tokens</li><li>max: 30 tokens</li></ul> |
|
641 |
* Samples:
|
642 |
+
| positive | anchor |
|
643 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
|
644 |
+
| <code>The total revenue for Google as of 2021 stands at approximately $181 billion, primarily driven by the performance of its advertising and cloud segments, hailing from the Information Technology sector.</code> | <code>What is the total revenue of Google as of 2021?</code> |
|
645 |
+
| <code>In Q4 2021, Amazon.com Inc. reported a significant increase in net income, reaching $14.3 billion, due to the surge in online shopping during the pandemic.</code> | <code>What was the Net Income of Amazon.com Inc. in Q4 2021?</code> |
|
646 |
+
| <code>Coca-Cola reported full-year 2021 revenue of $37.3 billion, a rise of 13% compared to $33.0 billion in 2020. This was primarily due to strong volume growth as well as improved pricing and mix.</code> | <code>How did Coca-Cola's revenue performance in 2021 measure against its previous year?</code> |
|
647 |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
648 |
```json
|
649 |
{
|
|
|
676 |
- `per_device_eval_batch_size`: 16
|
677 |
- `gradient_accumulation_steps`: 16
|
678 |
- `learning_rate`: 2e-05
|
679 |
+
- `num_train_epochs`: 10
|
680 |
- `lr_scheduler_type`: cosine
|
681 |
- `warmup_ratio`: 0.1
|
682 |
- `bf16`: True
|
|
|
704 |
- `adam_beta2`: 0.999
|
705 |
- `adam_epsilon`: 1e-08
|
706 |
- `max_grad_norm`: 1.0
|
707 |
+
- `num_train_epochs`: 10
|
708 |
- `max_steps`: -1
|
709 |
- `lr_scheduler_type`: cosine
|
710 |
- `lr_scheduler_kwargs`: {}
|
|
|
800 |
</details>
|
801 |
|
802 |
### Training Logs
|
803 |
+
| Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|
804 |
+
|:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
|
805 |
+
| 0.8649 | 6 | - | 0.8783 | 0.8651 | 0.8713 | 0.8783 | 0.8439 | 0.8809 |
|
806 |
+
| 1.4414 | 10 | 0.7682 | - | - | - | - | - | - |
|
807 |
+
| 1.8739 | 13 | - | 0.8918 | 0.8827 | 0.8875 | 0.8918 | 0.8729 | 0.8933 |
|
808 |
+
| 2.8829 | 20 | 0.1465 | 0.8948 | 0.8896 | 0.8928 | 0.8961 | 0.8884 | 0.8953 |
|
809 |
+
| 3.8919 | 27 | - | 0.8930 | 0.8884 | 0.8917 | 0.8959 | 0.8900 | 0.8945 |
|
810 |
+
| 4.3243 | 30 | 0.0646 | - | - | - | - | - | - |
|
811 |
+
| 4.9009 | 34 | - | 0.8972 | 0.8883 | 0.8947 | 0.8955 | 0.8925 | 0.8970 |
|
812 |
+
| 5.7658 | 40 | 0.0397 | - | - | - | - | - | - |
|
813 |
+
| 5.9099 | 41 | - | 0.8964 | 0.8915 | 0.8953 | 0.8943 | 0.8926 | 0.8979 |
|
814 |
+
| 6.9189 | 48 | - | 0.8994 | 0.8930 | 0.8966 | 0.8955 | 0.8932 | 0.8974 |
|
815 |
+
| 7.2072 | 50 | 0.0319 | - | - | - | - | - | - |
|
816 |
+
| 7.9279 | 55 | - | 0.8998 | 0.8945 | 0.8967 | 0.8961 | 0.8943 | 0.8999 |
|
817 |
+
| **8.6486** | **60** | **0.0296** | **0.8994** | **0.8957** | **0.898** | **0.8959** | **0.8943** | **0.8999** |
|
818 |
|
819 |
* The bold row denotes the saved checkpoint.
|
820 |
|
|
|
823 |
- Sentence Transformers: 3.0.1
|
824 |
- Transformers: 4.41.2
|
825 |
- PyTorch: 2.1.2+cu121
|
826 |
+
- Accelerate: 0.32.1
|
827 |
- Datasets: 2.19.1
|
828 |
- Tokenizers: 0.19.1
|
829 |
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1340612432
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:456f364d78053599abcadcbb14106385840e50fc49e888bc81171c3f6dd4f655
|
3 |
size 1340612432
|