rbhatia46 commited on
Commit
7ea0f12
1 Parent(s): 90e4583

Add new SentenceTransformer model.

Browse files
Files changed (2) hide show
  1. README.md +253 -245
  2. model.safetensors +1 -1
README.md CHANGED
@@ -27,54 +27,53 @@ tags:
27
  - sentence-similarity
28
  - feature-extraction
29
  - generated_from_trainer
30
- - dataset_size:580
31
  - loss:MatryoshkaLoss
32
  - loss:MultipleNegativesRankingLoss
33
  widget:
34
- - source_sentence: In response to hypothetical economic scenarios presented by the
35
- Federal Reserve, Wells Fargo formulated a capital action plan. This was done as
36
- a part of the CCAR (Comprehensive Capital Analysis and Review) process. The scenarios
37
- tested included a hypothetical severe global recession which, at its most stressful
38
- point, reduces our Pre-Provision Net Revenue (PPNR) to negative levels for four
39
- consecutive quarters.
40
  sentences:
41
- - What is the proposed dividend per share for the shareholders of Apple Inc. for
42
- the financial year ending in 2023?
43
- - What steps has Wells Fargo undertaken to sustain in the event of a severe global
44
- recession?
45
- - What was the total net income for Intel in 2021?
46
- - source_sentence: Microsoft Corporation has been paying consistent dividends to its
47
- shareholders on a quarterly basis. The company's Board of Directors reviews the
48
- dividend policy on a regular basis and plans to continue paying quarterly dividends,
49
- subject to capital availability and financial conditions
50
  sentences:
51
- - What did Amazon.com, Inc. anticipate regarding its free cash flows in the future?
52
- - What is Tesla's outlook for 2024 in terms of vehicle production?
53
- - What is Microsoft Corporation's dividend policy?
54
- - source_sentence: In the second quarter of 2023, Tesla's automotive revenue increased
55
- by 58% compared to the same period previous year. These results were primarily
56
- driven by increased vehicle deliveries and expansion in the China market.
 
 
57
  sentences:
58
- - What action did the Federal Reserve take to address the inflation surge in 2027?
59
- - What revenue did Apple Inc. report in the first quarter of 2021?
60
- - How did Tesla's automotive revenue perform in the second quarter of 2023?
61
- - source_sentence: Intel Corporation is an American multinational corporation and
62
- technology company headquartered in Santa Clara, California. It's primarily known
63
- for designing and manufacturing semiconductors and various technology solutions,
64
- including processors for computer systems and servers, integrated digital technology
65
- platforms, and system-on-chip units for gateways.
66
  sentences:
67
- - What is Intel's main area of business?
68
- - What was the revenue growth percentage of Amazon in the second quarter of 2024?
69
- - How much capital expenditure did Amazon.com report in 2025?
70
- - source_sentence: In 2023, EnergyCorp declared a dividend of $2.5 per share.
71
- sentences:
72
- - How did Amazon’s shift to one-day prime delivery affect its operational costs
73
  in 2023?
74
- - What dividend did the EnergyCorp pay to its shareholders in 2023?
75
- - What was the profit margin of Airbus in the year 2025?
 
 
 
 
 
 
 
 
76
  model-index:
77
- - name: Bmixedbread-ai/mxbai-embed-large-v1 Financial Matryoshka
78
  results:
79
  - task:
80
  type: information-retrieval
@@ -84,49 +83,49 @@ model-index:
84
  type: dim_1024
85
  metrics:
86
  - type: cosine_accuracy@1
87
- value: 0.8923076923076924
88
  name: Cosine Accuracy@1
89
  - type: cosine_accuracy@3
90
- value: 0.9692307692307692
91
  name: Cosine Accuracy@3
92
  - type: cosine_accuracy@5
93
- value: 0.9692307692307692
94
  name: Cosine Accuracy@5
95
  - type: cosine_accuracy@10
96
- value: 0.9846153846153847
97
  name: Cosine Accuracy@10
98
  - type: cosine_precision@1
99
- value: 0.8923076923076924
100
  name: Cosine Precision@1
101
  - type: cosine_precision@3
102
- value: 0.32307692307692304
103
  name: Cosine Precision@3
104
  - type: cosine_precision@5
105
- value: 0.1938461538461538
106
  name: Cosine Precision@5
107
  - type: cosine_precision@10
108
- value: 0.09846153846153843
109
  name: Cosine Precision@10
110
  - type: cosine_recall@1
111
- value: 0.8923076923076924
112
  name: Cosine Recall@1
113
  - type: cosine_recall@3
114
- value: 0.9692307692307692
115
  name: Cosine Recall@3
116
  - type: cosine_recall@5
117
- value: 0.9692307692307692
118
  name: Cosine Recall@5
119
  - type: cosine_recall@10
120
- value: 0.9846153846153847
121
  name: Cosine Recall@10
122
  - type: cosine_ndcg@10
123
- value: 0.941940347600734
124
  name: Cosine Ndcg@10
125
  - type: cosine_mrr@10
126
- value: 0.927838827838828
127
  name: Cosine Mrr@10
128
  - type: cosine_map@100
129
- value: 0.928083028083028
130
  name: Cosine Map@100
131
  - task:
132
  type: information-retrieval
@@ -136,49 +135,49 @@ model-index:
136
  type: dim_768
137
  metrics:
138
  - type: cosine_accuracy@1
139
- value: 0.8923076923076924
140
  name: Cosine Accuracy@1
141
  - type: cosine_accuracy@3
142
- value: 0.9692307692307692
143
  name: Cosine Accuracy@3
144
  - type: cosine_accuracy@5
145
- value: 0.9692307692307692
146
  name: Cosine Accuracy@5
147
  - type: cosine_accuracy@10
148
- value: 0.9846153846153847
149
  name: Cosine Accuracy@10
150
  - type: cosine_precision@1
151
- value: 0.8923076923076924
152
  name: Cosine Precision@1
153
  - type: cosine_precision@3
154
- value: 0.32307692307692304
155
  name: Cosine Precision@3
156
  - type: cosine_precision@5
157
- value: 0.1938461538461538
158
  name: Cosine Precision@5
159
  - type: cosine_precision@10
160
- value: 0.09846153846153843
161
  name: Cosine Precision@10
162
  - type: cosine_recall@1
163
- value: 0.8923076923076924
164
  name: Cosine Recall@1
165
  - type: cosine_recall@3
166
- value: 0.9692307692307692
167
  name: Cosine Recall@3
168
  - type: cosine_recall@5
169
- value: 0.9692307692307692
170
  name: Cosine Recall@5
171
  - type: cosine_recall@10
172
- value: 0.9846153846153847
173
  name: Cosine Recall@10
174
  - type: cosine_ndcg@10
175
- value: 0.9422922530434215
176
  name: Cosine Ndcg@10
177
  - type: cosine_mrr@10
178
- value: 0.9282051282051282
179
  name: Cosine Mrr@10
180
  - type: cosine_map@100
181
- value: 0.9284418145956608
182
  name: Cosine Map@100
183
  - task:
184
  type: information-retrieval
@@ -188,49 +187,49 @@ model-index:
188
  type: dim_512
189
  metrics:
190
  - type: cosine_accuracy@1
191
- value: 0.8923076923076924
192
  name: Cosine Accuracy@1
193
  - type: cosine_accuracy@3
194
- value: 0.9692307692307692
195
  name: Cosine Accuracy@3
196
  - type: cosine_accuracy@5
197
- value: 0.9692307692307692
198
  name: Cosine Accuracy@5
199
  - type: cosine_accuracy@10
200
- value: 0.9846153846153847
201
  name: Cosine Accuracy@10
202
  - type: cosine_precision@1
203
- value: 0.8923076923076924
204
  name: Cosine Precision@1
205
  - type: cosine_precision@3
206
- value: 0.32307692307692304
207
  name: Cosine Precision@3
208
  - type: cosine_precision@5
209
- value: 0.1938461538461538
210
  name: Cosine Precision@5
211
  - type: cosine_precision@10
212
- value: 0.09846153846153843
213
  name: Cosine Precision@10
214
  - type: cosine_recall@1
215
- value: 0.8923076923076924
216
  name: Cosine Recall@1
217
  - type: cosine_recall@3
218
- value: 0.9692307692307692
219
  name: Cosine Recall@3
220
  - type: cosine_recall@5
221
- value: 0.9692307692307692
222
  name: Cosine Recall@5
223
  - type: cosine_recall@10
224
- value: 0.9846153846153847
225
  name: Cosine Recall@10
226
  - type: cosine_ndcg@10
227
- value: 0.941940347600734
228
  name: Cosine Ndcg@10
229
  - type: cosine_mrr@10
230
- value: 0.927838827838828
231
  name: Cosine Mrr@10
232
  - type: cosine_map@100
233
- value: 0.928113553113553
234
  name: Cosine Map@100
235
  - task:
236
  type: information-retrieval
@@ -240,49 +239,49 @@ model-index:
240
  type: dim_256
241
  metrics:
242
  - type: cosine_accuracy@1
243
- value: 0.8923076923076924
244
  name: Cosine Accuracy@1
245
  - type: cosine_accuracy@3
246
- value: 0.9692307692307692
247
  name: Cosine Accuracy@3
248
  - type: cosine_accuracy@5
249
- value: 0.9692307692307692
250
  name: Cosine Accuracy@5
251
  - type: cosine_accuracy@10
252
- value: 0.9846153846153847
253
  name: Cosine Accuracy@10
254
  - type: cosine_precision@1
255
- value: 0.8923076923076924
256
  name: Cosine Precision@1
257
  - type: cosine_precision@3
258
- value: 0.32307692307692304
259
  name: Cosine Precision@3
260
  - type: cosine_precision@5
261
- value: 0.1938461538461538
262
  name: Cosine Precision@5
263
  - type: cosine_precision@10
264
- value: 0.09846153846153843
265
  name: Cosine Precision@10
266
  - type: cosine_recall@1
267
- value: 0.8923076923076924
268
  name: Cosine Recall@1
269
  - type: cosine_recall@3
270
- value: 0.9692307692307692
271
  name: Cosine Recall@3
272
  - type: cosine_recall@5
273
- value: 0.9692307692307692
274
  name: Cosine Recall@5
275
  - type: cosine_recall@10
276
- value: 0.9846153846153847
277
  name: Cosine Recall@10
278
  - type: cosine_ndcg@10
279
- value: 0.9416654482692324
280
  name: Cosine Ndcg@10
281
  - type: cosine_mrr@10
282
- value: 0.9275641025641026
283
  name: Cosine Mrr@10
284
  - type: cosine_map@100
285
- value: 0.9278846153846154
286
  name: Cosine Map@100
287
  - task:
288
  type: information-retrieval
@@ -292,49 +291,49 @@ model-index:
292
  type: dim_128
293
  metrics:
294
  - type: cosine_accuracy@1
295
- value: 0.8461538461538461
296
  name: Cosine Accuracy@1
297
  - type: cosine_accuracy@3
298
- value: 0.9538461538461539
299
  name: Cosine Accuracy@3
300
  - type: cosine_accuracy@5
301
- value: 0.9692307692307692
302
  name: Cosine Accuracy@5
303
  - type: cosine_accuracy@10
304
- value: 0.9846153846153847
305
  name: Cosine Accuracy@10
306
  - type: cosine_precision@1
307
- value: 0.8461538461538461
308
  name: Cosine Precision@1
309
  - type: cosine_precision@3
310
- value: 0.31794871794871793
311
  name: Cosine Precision@3
312
  - type: cosine_precision@5
313
- value: 0.1938461538461538
314
  name: Cosine Precision@5
315
  - type: cosine_precision@10
316
- value: 0.09846153846153843
317
  name: Cosine Precision@10
318
  - type: cosine_recall@1
319
- value: 0.8461538461538461
320
  name: Cosine Recall@1
321
  - type: cosine_recall@3
322
- value: 0.9538461538461539
323
  name: Cosine Recall@3
324
  - type: cosine_recall@5
325
- value: 0.9692307692307692
326
  name: Cosine Recall@5
327
  - type: cosine_recall@10
328
- value: 0.9846153846153847
329
  name: Cosine Recall@10
330
  - type: cosine_ndcg@10
331
- value: 0.9221774232775186
332
  name: Cosine Ndcg@10
333
  - type: cosine_mrr@10
334
- value: 0.9012820512820513
335
  name: Cosine Mrr@10
336
  - type: cosine_map@100
337
- value: 0.9016398330351819
338
  name: Cosine Map@100
339
  - task:
340
  type: information-retrieval
@@ -344,53 +343,53 @@ model-index:
344
  type: dim_64
345
  metrics:
346
  - type: cosine_accuracy@1
347
- value: 0.8153846153846154
348
  name: Cosine Accuracy@1
349
  - type: cosine_accuracy@3
350
- value: 0.9692307692307692
351
  name: Cosine Accuracy@3
352
  - type: cosine_accuracy@5
353
- value: 0.9846153846153847
354
  name: Cosine Accuracy@5
355
  - type: cosine_accuracy@10
356
- value: 0.9846153846153847
357
  name: Cosine Accuracy@10
358
  - type: cosine_precision@1
359
- value: 0.8153846153846154
360
  name: Cosine Precision@1
361
  - type: cosine_precision@3
362
- value: 0.32307692307692304
363
  name: Cosine Precision@3
364
  - type: cosine_precision@5
365
- value: 0.19692307692307687
366
  name: Cosine Precision@5
367
  - type: cosine_precision@10
368
- value: 0.09846153846153843
369
  name: Cosine Precision@10
370
  - type: cosine_recall@1
371
- value: 0.8153846153846154
372
  name: Cosine Recall@1
373
  - type: cosine_recall@3
374
- value: 0.9692307692307692
375
  name: Cosine Recall@3
376
  - type: cosine_recall@5
377
- value: 0.9846153846153847
378
  name: Cosine Recall@5
379
  - type: cosine_recall@10
380
- value: 0.9846153846153847
381
  name: Cosine Recall@10
382
  - type: cosine_ndcg@10
383
- value: 0.9123594012651499
384
  name: Cosine Ndcg@10
385
  - type: cosine_mrr@10
386
- value: 0.8876923076923079
387
  name: Cosine Mrr@10
388
  - type: cosine_map@100
389
- value: 0.8879622132253712
390
  name: Cosine Map@100
391
  ---
392
 
393
- # Bmixedbread-ai/mxbai-embed-large-v1 Financial Matryoshka
394
 
395
  This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
396
 
@@ -439,9 +438,9 @@ from sentence_transformers import SentenceTransformer
439
  model = SentenceTransformer("rbhatia46/mxbai-embed-large-v1-financial-rag-matryoshka")
440
  # Run inference
441
  sentences = [
442
- 'In 2023, EnergyCorp declared a dividend of $2.5 per share.',
443
- 'What dividend did the EnergyCorp pay to its shareholders in 2023?',
444
- 'How did Amazon’s shift to one-day prime delivery affect its operational costs in 2023?',
445
  ]
446
  embeddings = model.encode(sentences)
447
  print(embeddings.shape)
@@ -487,21 +486,21 @@ You can finetune this model on your own dataset.
487
 
488
  | Metric | Value |
489
  |:--------------------|:-----------|
490
- | cosine_accuracy@1 | 0.8923 |
491
- | cosine_accuracy@3 | 0.9692 |
492
- | cosine_accuracy@5 | 0.9692 |
493
- | cosine_accuracy@10 | 0.9846 |
494
- | cosine_precision@1 | 0.8923 |
495
- | cosine_precision@3 | 0.3231 |
496
- | cosine_precision@5 | 0.1938 |
497
- | cosine_precision@10 | 0.0985 |
498
- | cosine_recall@1 | 0.8923 |
499
- | cosine_recall@3 | 0.9692 |
500
- | cosine_recall@5 | 0.9692 |
501
- | cosine_recall@10 | 0.9846 |
502
- | cosine_ndcg@10 | 0.9419 |
503
- | cosine_mrr@10 | 0.9278 |
504
- | **cosine_map@100** | **0.9281** |
505
 
506
  #### Information Retrieval
507
  * Dataset: `dim_768`
@@ -509,21 +508,21 @@ You can finetune this model on your own dataset.
509
 
510
  | Metric | Value |
511
  |:--------------------|:-----------|
512
- | cosine_accuracy@1 | 0.8923 |
513
- | cosine_accuracy@3 | 0.9692 |
514
- | cosine_accuracy@5 | 0.9692 |
515
- | cosine_accuracy@10 | 0.9846 |
516
- | cosine_precision@1 | 0.8923 |
517
- | cosine_precision@3 | 0.3231 |
518
- | cosine_precision@5 | 0.1938 |
519
- | cosine_precision@10 | 0.0985 |
520
- | cosine_recall@1 | 0.8923 |
521
- | cosine_recall@3 | 0.9692 |
522
- | cosine_recall@5 | 0.9692 |
523
- | cosine_recall@10 | 0.9846 |
524
- | cosine_ndcg@10 | 0.9423 |
525
- | cosine_mrr@10 | 0.9282 |
526
- | **cosine_map@100** | **0.9284** |
527
 
528
  #### Information Retrieval
529
  * Dataset: `dim_512`
@@ -531,43 +530,43 @@ You can finetune this model on your own dataset.
531
 
532
  | Metric | Value |
533
  |:--------------------|:-----------|
534
- | cosine_accuracy@1 | 0.8923 |
535
- | cosine_accuracy@3 | 0.9692 |
536
- | cosine_accuracy@5 | 0.9692 |
537
- | cosine_accuracy@10 | 0.9846 |
538
- | cosine_precision@1 | 0.8923 |
539
- | cosine_precision@3 | 0.3231 |
540
- | cosine_precision@5 | 0.1938 |
541
- | cosine_precision@10 | 0.0985 |
542
- | cosine_recall@1 | 0.8923 |
543
- | cosine_recall@3 | 0.9692 |
544
- | cosine_recall@5 | 0.9692 |
545
- | cosine_recall@10 | 0.9846 |
546
- | cosine_ndcg@10 | 0.9419 |
547
- | cosine_mrr@10 | 0.9278 |
548
- | **cosine_map@100** | **0.9281** |
549
 
550
  #### Information Retrieval
551
  * Dataset: `dim_256`
552
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
553
 
554
- | Metric | Value |
555
- |:--------------------|:-----------|
556
- | cosine_accuracy@1 | 0.8923 |
557
- | cosine_accuracy@3 | 0.9692 |
558
- | cosine_accuracy@5 | 0.9692 |
559
- | cosine_accuracy@10 | 0.9846 |
560
- | cosine_precision@1 | 0.8923 |
561
- | cosine_precision@3 | 0.3231 |
562
- | cosine_precision@5 | 0.1938 |
563
- | cosine_precision@10 | 0.0985 |
564
- | cosine_recall@1 | 0.8923 |
565
- | cosine_recall@3 | 0.9692 |
566
- | cosine_recall@5 | 0.9692 |
567
- | cosine_recall@10 | 0.9846 |
568
- | cosine_ndcg@10 | 0.9417 |
569
- | cosine_mrr@10 | 0.9276 |
570
- | **cosine_map@100** | **0.9279** |
571
 
572
  #### Information Retrieval
573
  * Dataset: `dim_128`
@@ -575,43 +574,43 @@ You can finetune this model on your own dataset.
575
 
576
  | Metric | Value |
577
  |:--------------------|:-----------|
578
- | cosine_accuracy@1 | 0.8462 |
579
- | cosine_accuracy@3 | 0.9538 |
580
- | cosine_accuracy@5 | 0.9692 |
581
- | cosine_accuracy@10 | 0.9846 |
582
- | cosine_precision@1 | 0.8462 |
583
- | cosine_precision@3 | 0.3179 |
584
- | cosine_precision@5 | 0.1938 |
585
  | cosine_precision@10 | 0.0985 |
586
- | cosine_recall@1 | 0.8462 |
587
- | cosine_recall@3 | 0.9538 |
588
- | cosine_recall@5 | 0.9692 |
589
- | cosine_recall@10 | 0.9846 |
590
- | cosine_ndcg@10 | 0.9222 |
591
- | cosine_mrr@10 | 0.9013 |
592
- | **cosine_map@100** | **0.9016** |
593
 
594
  #### Information Retrieval
595
  * Dataset: `dim_64`
596
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
597
 
598
- | Metric | Value |
599
- |:--------------------|:----------|
600
- | cosine_accuracy@1 | 0.8154 |
601
- | cosine_accuracy@3 | 0.9692 |
602
- | cosine_accuracy@5 | 0.9846 |
603
- | cosine_accuracy@10 | 0.9846 |
604
- | cosine_precision@1 | 0.8154 |
605
- | cosine_precision@3 | 0.3231 |
606
- | cosine_precision@5 | 0.1969 |
607
- | cosine_precision@10 | 0.0985 |
608
- | cosine_recall@1 | 0.8154 |
609
- | cosine_recall@3 | 0.9692 |
610
- | cosine_recall@5 | 0.9846 |
611
- | cosine_recall@10 | 0.9846 |
612
- | cosine_ndcg@10 | 0.9124 |
613
- | cosine_mrr@10 | 0.8877 |
614
- | **cosine_map@100** | **0.888** |
615
 
616
  <!--
617
  ## Bias, Risks and Limitations
@@ -632,19 +631,19 @@ You can finetune this model on your own dataset.
632
  #### Unnamed Dataset
633
 
634
 
635
- * Size: 580 training samples
636
  * Columns: <code>positive</code> and <code>anchor</code>
637
  * Approximate statistics based on the first 1000 samples:
638
- | | positive | anchor |
639
- |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
640
- | type | string | string |
641
- | details | <ul><li>min: 16 tokens</li><li>mean: 44.21 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 17.5 tokens</li><li>max: 30 tokens</li></ul> |
642
  * Samples:
643
- | positive | anchor |
644
- |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|
645
- | <code>For the fiscal year 2020, Microsoft Corporation reported a net income of $44.3 billion, showing a 13% increase from the previous year.</code> | <code>What was the net income of Microsoft Corporation for the fiscal year 2020?</code> |
646
- | <code>As of the latest financial report, Amazon has a current price to earnings ratio (P/E ratio) of 76.6.</code> | <code>What is Amazon's current P/E ratio according to their latest financial report?</code> |
647
- | <code>Microsoft Corporation posted an EBITDA (Earnings Before Interest, Taxes, Depreciation, and Amortization) margin of approximately 47% in 2021, showcasing strong profitability.</code> | <code>What was Microsoft Corporation's EBITDA margin in 2021?</code> |
648
  * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
649
  ```json
650
  {
@@ -677,7 +676,7 @@ You can finetune this model on your own dataset.
677
  - `per_device_eval_batch_size`: 16
678
  - `gradient_accumulation_steps`: 16
679
  - `learning_rate`: 2e-05
680
- - `num_train_epochs`: 4
681
  - `lr_scheduler_type`: cosine
682
  - `warmup_ratio`: 0.1
683
  - `bf16`: True
@@ -705,7 +704,7 @@ You can finetune this model on your own dataset.
705
  - `adam_beta2`: 0.999
706
  - `adam_epsilon`: 1e-08
707
  - `max_grad_norm`: 1.0
708
- - `num_train_epochs`: 4
709
  - `max_steps`: -1
710
  - `lr_scheduler_type`: cosine
711
  - `lr_scheduler_kwargs`: {}
@@ -801,12 +800,21 @@ You can finetune this model on your own dataset.
801
  </details>
802
 
803
  ### Training Logs
804
- | Epoch | Step | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
805
- |:----------:|:-----:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
806
- | 0.8421 | 1 | 0.9032 | 0.8846 | 0.9033 | 0.9109 | 0.8695 | 0.9186 |
807
- | 1.6842 | 2 | 0.9121 | 0.8948 | 0.9174 | 0.9199 | 0.8777 | 0.9198 |
808
- | 2.5263 | 3 | 0.9281 | 0.9013 | 0.9202 | 0.9281 | 0.8879 | 0.9204 |
809
- | **3.3684** | **4** | **0.9281** | **0.9016** | **0.9279** | **0.9281** | **0.888** | **0.9284** |
 
 
 
 
 
 
 
 
 
810
 
811
  * The bold row denotes the saved checkpoint.
812
 
@@ -815,7 +823,7 @@ You can finetune this model on your own dataset.
815
  - Sentence Transformers: 3.0.1
816
  - Transformers: 4.41.2
817
  - PyTorch: 2.1.2+cu121
818
- - Accelerate: 0.31.0
819
  - Datasets: 2.19.1
820
  - Tokenizers: 0.19.1
821
 
 
27
  - sentence-similarity
28
  - feature-extraction
29
  - generated_from_trainer
30
+ - dataset_size:3550
31
  - loss:MatryoshkaLoss
32
  - loss:MultipleNegativesRankingLoss
33
  widget:
34
+ - source_sentence: At the end of 2023, Alphabet Inc. reported total debts amounting
35
+ to $14.2 billion, compared to $10.9 billion at the end of 2022.
 
 
 
 
36
  sentences:
37
+ - What was the total debt of Alphabet Inc. as of the end of 2023?
38
+ - What was ExxonMobil's contribution to the energy production in the Energy sector
39
+ during 2020?
40
+ - Describe Amazon's revenue growth in 2023?
41
+ - source_sentence: In 2022, Pfizer strategically managed cash flow from investments
42
+ by utilizing operating cash flow, issuing new debt, and through the monetization
43
+ of certain non-core assets. This approach of diversifying the source of funding
44
+ for investments was done to minimize risk and uncertainty in economic conditions.
 
45
  sentences:
46
+ - How much capital expenditure did AUX Energy invest in renewable energy projects
47
+ in 2022?
48
+ - What effect did the 2023 market downturn have on Amazon's retail and cloud segments?
49
+ - How did Pfizer manage cash flows from investments in 2022?
50
+ - source_sentence: The primary revenue generators for JPMorgan Chase for the fiscal
51
+ year 2023 were the Corporate & Investment Bank (CIB) and the Asset & Wealth Management
52
+ (AWM) sectors. The CIB sector benefited from a rise in merger and acquisition
53
+ activities, while AWM saw large net inflows.
54
  sentences:
55
+ - What is General Electric's strategic priority for its Aviation business segment?
56
+ - Which sectors contributed the most to the revenue of JPMorgan Chase for FY 2023?
57
+ - What is the principal activity of Apple Inc.?
58
+ - source_sentence: For the fiscal year 2023, Microsoft's Intelligent Cloud segment
59
+ generated revenues of $58 billion, demonstrating solid growth fueled by strong
60
+ demand for cloud services and server products.
 
 
61
  sentences:
62
+ - What is the primary strategy of McDonald’s to drive growth in the future?
63
+ - What impact did the increase in gold prices have on Newmont Corporation's revenue
 
 
 
 
64
  in 2023?
65
+ - What was the revenue generated by Microsoft's Intelligent Cloud segment for fiscal
66
+ year 2023?
67
+ - source_sentence: Microsoft, in their latest press release, revealed that they are
68
+ anticipating a revenue growth of approximately 12% for the fiscal year ending
69
+ in 2024.
70
+ sentences:
71
+ - What is Microsoft's projected revenue growth for fiscal year 2024?
72
+ - What is the fair value of equity method investments of Microsoft in the fiscal
73
+ year 2025?
74
+ - What was the impact of COVID-19 on Zoom's profits?
75
  model-index:
76
+ - name: mxbai-embed-large-v1-financial-rag-matryoshka
77
  results:
78
  - task:
79
  type: information-retrieval
 
83
  type: dim_1024
84
  metrics:
85
  - type: cosine_accuracy@1
86
+ value: 0.8455696202531645
87
  name: Cosine Accuracy@1
88
  - type: cosine_accuracy@3
89
+ value: 0.9392405063291139
90
  name: Cosine Accuracy@3
91
  - type: cosine_accuracy@5
92
+ value: 0.9670886075949368
93
  name: Cosine Accuracy@5
94
  - type: cosine_accuracy@10
95
+ value: 0.9898734177215189
96
  name: Cosine Accuracy@10
97
  - type: cosine_precision@1
98
+ value: 0.8455696202531645
99
  name: Cosine Precision@1
100
  - type: cosine_precision@3
101
+ value: 0.31308016877637135
102
  name: Cosine Precision@3
103
  - type: cosine_precision@5
104
+ value: 0.19341772151898737
105
  name: Cosine Precision@5
106
  - type: cosine_precision@10
107
+ value: 0.0989873417721519
108
  name: Cosine Precision@10
109
  - type: cosine_recall@1
110
+ value: 0.8455696202531645
111
  name: Cosine Recall@1
112
  - type: cosine_recall@3
113
+ value: 0.9392405063291139
114
  name: Cosine Recall@3
115
  - type: cosine_recall@5
116
+ value: 0.9670886075949368
117
  name: Cosine Recall@5
118
  - type: cosine_recall@10
119
+ value: 0.9898734177215189
120
  name: Cosine Recall@10
121
  - type: cosine_ndcg@10
122
+ value: 0.9212281141643793
123
  name: Cosine Ndcg@10
124
  - type: cosine_mrr@10
125
+ value: 0.898873819570022
126
  name: Cosine Mrr@10
127
  - type: cosine_map@100
128
+ value: 0.8993853803492357
129
  name: Cosine Map@100
130
  - task:
131
  type: information-retrieval
 
135
  type: dim_768
136
  metrics:
137
  - type: cosine_accuracy@1
138
+ value: 0.8455696202531645
139
  name: Cosine Accuracy@1
140
  - type: cosine_accuracy@3
141
+ value: 0.9392405063291139
142
  name: Cosine Accuracy@3
143
  - type: cosine_accuracy@5
144
+ value: 0.9670886075949368
145
  name: Cosine Accuracy@5
146
  - type: cosine_accuracy@10
147
+ value: 0.9898734177215189
148
  name: Cosine Accuracy@10
149
  - type: cosine_precision@1
150
+ value: 0.8455696202531645
151
  name: Cosine Precision@1
152
  - type: cosine_precision@3
153
+ value: 0.3130801687763713
154
  name: Cosine Precision@3
155
  - type: cosine_precision@5
156
+ value: 0.1934177215189873
157
  name: Cosine Precision@5
158
  - type: cosine_precision@10
159
+ value: 0.0989873417721519
160
  name: Cosine Precision@10
161
  - type: cosine_recall@1
162
+ value: 0.8455696202531645
163
  name: Cosine Recall@1
164
  - type: cosine_recall@3
165
+ value: 0.9392405063291139
166
  name: Cosine Recall@3
167
  - type: cosine_recall@5
168
+ value: 0.9670886075949368
169
  name: Cosine Recall@5
170
  - type: cosine_recall@10
171
+ value: 0.9898734177215189
172
  name: Cosine Recall@10
173
  - type: cosine_ndcg@10
174
+ value: 0.9217284365901642
175
  name: Cosine Ndcg@10
176
  - type: cosine_mrr@10
177
+ value: 0.8994826200522402
178
  name: Cosine Mrr@10
179
  - type: cosine_map@100
180
+ value: 0.8999494134557425
181
  name: Cosine Map@100
182
  - task:
183
  type: information-retrieval
 
187
  type: dim_512
188
  metrics:
189
  - type: cosine_accuracy@1
190
+ value: 0.8405063291139241
191
  name: Cosine Accuracy@1
192
  - type: cosine_accuracy@3
193
+ value: 0.9367088607594937
194
  name: Cosine Accuracy@3
195
  - type: cosine_accuracy@5
196
+ value: 0.9645569620253165
197
  name: Cosine Accuracy@5
198
  - type: cosine_accuracy@10
199
+ value: 0.9898734177215189
200
  name: Cosine Accuracy@10
201
  - type: cosine_precision@1
202
+ value: 0.8405063291139241
203
  name: Cosine Precision@1
204
  - type: cosine_precision@3
205
+ value: 0.31223628691983124
206
  name: Cosine Precision@3
207
  - type: cosine_precision@5
208
+ value: 0.19291139240506328
209
  name: Cosine Precision@5
210
  - type: cosine_precision@10
211
+ value: 0.0989873417721519
212
  name: Cosine Precision@10
213
  - type: cosine_recall@1
214
+ value: 0.8405063291139241
215
  name: Cosine Recall@1
216
  - type: cosine_recall@3
217
+ value: 0.9367088607594937
218
  name: Cosine Recall@3
219
  - type: cosine_recall@5
220
+ value: 0.9645569620253165
221
  name: Cosine Recall@5
222
  - type: cosine_recall@10
223
+ value: 0.9898734177215189
224
  name: Cosine Recall@10
225
  - type: cosine_ndcg@10
226
+ value: 0.9186273598847787
227
  name: Cosine Ndcg@10
228
  - type: cosine_mrr@10
229
+ value: 0.8954631303998389
230
  name: Cosine Mrr@10
231
  - type: cosine_map@100
232
+ value: 0.8958871142668611
233
  name: Cosine Map@100
234
  - task:
235
  type: information-retrieval
 
239
  type: dim_256
240
  metrics:
241
  - type: cosine_accuracy@1
242
+ value: 0.8455696202531645
243
  name: Cosine Accuracy@1
244
  - type: cosine_accuracy@3
245
+ value: 0.9392405063291139
246
  name: Cosine Accuracy@3
247
  - type: cosine_accuracy@5
248
+ value: 0.9645569620253165
249
  name: Cosine Accuracy@5
250
  - type: cosine_accuracy@10
251
+ value: 0.9898734177215189
252
  name: Cosine Accuracy@10
253
  - type: cosine_precision@1
254
+ value: 0.8455696202531645
255
  name: Cosine Precision@1
256
  - type: cosine_precision@3
257
+ value: 0.3130801687763713
258
  name: Cosine Precision@3
259
  - type: cosine_precision@5
260
+ value: 0.19291139240506328
261
  name: Cosine Precision@5
262
  - type: cosine_precision@10
263
+ value: 0.0989873417721519
264
  name: Cosine Precision@10
265
  - type: cosine_recall@1
266
+ value: 0.8455696202531645
267
  name: Cosine Recall@1
268
  - type: cosine_recall@3
269
+ value: 0.9392405063291139
270
  name: Cosine Recall@3
271
  - type: cosine_recall@5
272
+ value: 0.9645569620253165
273
  name: Cosine Recall@5
274
  - type: cosine_recall@10
275
+ value: 0.9898734177215189
276
  name: Cosine Recall@10
277
  - type: cosine_ndcg@10
278
+ value: 0.9201161947922436
279
  name: Cosine Ndcg@10
280
  - type: cosine_mrr@10
281
+ value: 0.8975597749648381
282
  name: Cosine Mrr@10
283
  - type: cosine_map@100
284
+ value: 0.8979721416614026
285
  name: Cosine Map@100
286
  - task:
287
  type: information-retrieval
 
291
  type: dim_128
292
  metrics:
293
  - type: cosine_accuracy@1
294
+ value: 0.8405063291139241
295
  name: Cosine Accuracy@1
296
  - type: cosine_accuracy@3
297
+ value: 0.9417721518987342
298
  name: Cosine Accuracy@3
299
  - type: cosine_accuracy@5
300
+ value: 0.9645569620253165
301
  name: Cosine Accuracy@5
302
  - type: cosine_accuracy@10
303
+ value: 0.9848101265822785
304
  name: Cosine Accuracy@10
305
  - type: cosine_precision@1
306
+ value: 0.8405063291139241
307
  name: Cosine Precision@1
308
  - type: cosine_precision@3
309
+ value: 0.3139240506329114
310
  name: Cosine Precision@3
311
  - type: cosine_precision@5
312
+ value: 0.19291139240506328
313
  name: Cosine Precision@5
314
  - type: cosine_precision@10
315
+ value: 0.09848101265822784
316
  name: Cosine Precision@10
317
  - type: cosine_recall@1
318
+ value: 0.8405063291139241
319
  name: Cosine Recall@1
320
  - type: cosine_recall@3
321
+ value: 0.9417721518987342
322
  name: Cosine Recall@3
323
  - type: cosine_recall@5
324
+ value: 0.9645569620253165
325
  name: Cosine Recall@5
326
  - type: cosine_recall@10
327
+ value: 0.9848101265822785
328
  name: Cosine Recall@10
329
  - type: cosine_ndcg@10
330
+ value: 0.9170562815583235
331
  name: Cosine Ndcg@10
332
  - type: cosine_mrr@10
333
+ value: 0.8948693992364878
334
  name: Cosine Mrr@10
335
  - type: cosine_map@100
336
+ value: 0.8957325656059834
337
  name: Cosine Map@100
338
  - task:
339
  type: information-retrieval
 
343
  type: dim_64
344
  metrics:
345
  - type: cosine_accuracy@1
346
+ value: 0.8405063291139241
347
  name: Cosine Accuracy@1
348
  - type: cosine_accuracy@3
349
+ value: 0.9316455696202531
350
  name: Cosine Accuracy@3
351
  - type: cosine_accuracy@5
352
+ value: 0.9569620253164557
353
  name: Cosine Accuracy@5
354
  - type: cosine_accuracy@10
355
+ value: 0.9822784810126582
356
  name: Cosine Accuracy@10
357
  - type: cosine_precision@1
358
+ value: 0.8405063291139241
359
  name: Cosine Precision@1
360
  - type: cosine_precision@3
361
+ value: 0.3105485232067511
362
  name: Cosine Precision@3
363
  - type: cosine_precision@5
364
+ value: 0.19139240506329114
365
  name: Cosine Precision@5
366
  - type: cosine_precision@10
367
+ value: 0.09822784810126582
368
  name: Cosine Precision@10
369
  - type: cosine_recall@1
370
+ value: 0.8405063291139241
371
  name: Cosine Recall@1
372
  - type: cosine_recall@3
373
+ value: 0.9316455696202531
374
  name: Cosine Recall@3
375
  - type: cosine_recall@5
376
+ value: 0.9569620253164557
377
  name: Cosine Recall@5
378
  - type: cosine_recall@10
379
+ value: 0.9822784810126582
380
  name: Cosine Recall@10
381
  - type: cosine_ndcg@10
382
+ value: 0.9153318022971121
383
  name: Cosine Ndcg@10
384
  - type: cosine_mrr@10
385
+ value: 0.8934589109905566
386
  name: Cosine Mrr@10
387
  - type: cosine_map@100
388
+ value: 0.8943102728098851
389
  name: Cosine Map@100
390
  ---
391
 
392
+ # mxbai-embed-large-v1-financial-rag-matryoshka
393
 
394
  This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
395
 
 
438
  model = SentenceTransformer("rbhatia46/mxbai-embed-large-v1-financial-rag-matryoshka")
439
  # Run inference
440
  sentences = [
441
+ 'Microsoft, in their latest press release, revealed that they are anticipating a revenue growth of approximately 12% for the fiscal year ending in 2024.',
442
+ "What is Microsoft's projected revenue growth for fiscal year 2024?",
443
+ "What was the impact of COVID-19 on Zoom's profits?",
444
  ]
445
  embeddings = model.encode(sentences)
446
  print(embeddings.shape)
 
486
 
487
  | Metric | Value |
488
  |:--------------------|:-----------|
489
+ | cosine_accuracy@1 | 0.8456 |
490
+ | cosine_accuracy@3 | 0.9392 |
491
+ | cosine_accuracy@5 | 0.9671 |
492
+ | cosine_accuracy@10 | 0.9899 |
493
+ | cosine_precision@1 | 0.8456 |
494
+ | cosine_precision@3 | 0.3131 |
495
+ | cosine_precision@5 | 0.1934 |
496
+ | cosine_precision@10 | 0.099 |
497
+ | cosine_recall@1 | 0.8456 |
498
+ | cosine_recall@3 | 0.9392 |
499
+ | cosine_recall@5 | 0.9671 |
500
+ | cosine_recall@10 | 0.9899 |
501
+ | cosine_ndcg@10 | 0.9212 |
502
+ | cosine_mrr@10 | 0.8989 |
503
+ | **cosine_map@100** | **0.8994** |
504
 
505
  #### Information Retrieval
506
  * Dataset: `dim_768`
 
508
 
509
  | Metric | Value |
510
  |:--------------------|:-----------|
511
+ | cosine_accuracy@1 | 0.8456 |
512
+ | cosine_accuracy@3 | 0.9392 |
513
+ | cosine_accuracy@5 | 0.9671 |
514
+ | cosine_accuracy@10 | 0.9899 |
515
+ | cosine_precision@1 | 0.8456 |
516
+ | cosine_precision@3 | 0.3131 |
517
+ | cosine_precision@5 | 0.1934 |
518
+ | cosine_precision@10 | 0.099 |
519
+ | cosine_recall@1 | 0.8456 |
520
+ | cosine_recall@3 | 0.9392 |
521
+ | cosine_recall@5 | 0.9671 |
522
+ | cosine_recall@10 | 0.9899 |
523
+ | cosine_ndcg@10 | 0.9217 |
524
+ | cosine_mrr@10 | 0.8995 |
525
+ | **cosine_map@100** | **0.8999** |
526
 
527
  #### Information Retrieval
528
  * Dataset: `dim_512`
 
530
 
531
  | Metric | Value |
532
  |:--------------------|:-----------|
533
+ | cosine_accuracy@1 | 0.8405 |
534
+ | cosine_accuracy@3 | 0.9367 |
535
+ | cosine_accuracy@5 | 0.9646 |
536
+ | cosine_accuracy@10 | 0.9899 |
537
+ | cosine_precision@1 | 0.8405 |
538
+ | cosine_precision@3 | 0.3122 |
539
+ | cosine_precision@5 | 0.1929 |
540
+ | cosine_precision@10 | 0.099 |
541
+ | cosine_recall@1 | 0.8405 |
542
+ | cosine_recall@3 | 0.9367 |
543
+ | cosine_recall@5 | 0.9646 |
544
+ | cosine_recall@10 | 0.9899 |
545
+ | cosine_ndcg@10 | 0.9186 |
546
+ | cosine_mrr@10 | 0.8955 |
547
+ | **cosine_map@100** | **0.8959** |
548
 
549
  #### Information Retrieval
550
  * Dataset: `dim_256`
551
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
552
 
553
+ | Metric | Value |
554
+ |:--------------------|:----------|
555
+ | cosine_accuracy@1 | 0.8456 |
556
+ | cosine_accuracy@3 | 0.9392 |
557
+ | cosine_accuracy@5 | 0.9646 |
558
+ | cosine_accuracy@10 | 0.9899 |
559
+ | cosine_precision@1 | 0.8456 |
560
+ | cosine_precision@3 | 0.3131 |
561
+ | cosine_precision@5 | 0.1929 |
562
+ | cosine_precision@10 | 0.099 |
563
+ | cosine_recall@1 | 0.8456 |
564
+ | cosine_recall@3 | 0.9392 |
565
+ | cosine_recall@5 | 0.9646 |
566
+ | cosine_recall@10 | 0.9899 |
567
+ | cosine_ndcg@10 | 0.9201 |
568
+ | cosine_mrr@10 | 0.8976 |
569
+ | **cosine_map@100** | **0.898** |
570
 
571
  #### Information Retrieval
572
  * Dataset: `dim_128`
 
574
 
575
  | Metric | Value |
576
  |:--------------------|:-----------|
577
+ | cosine_accuracy@1 | 0.8405 |
578
+ | cosine_accuracy@3 | 0.9418 |
579
+ | cosine_accuracy@5 | 0.9646 |
580
+ | cosine_accuracy@10 | 0.9848 |
581
+ | cosine_precision@1 | 0.8405 |
582
+ | cosine_precision@3 | 0.3139 |
583
+ | cosine_precision@5 | 0.1929 |
584
  | cosine_precision@10 | 0.0985 |
585
+ | cosine_recall@1 | 0.8405 |
586
+ | cosine_recall@3 | 0.9418 |
587
+ | cosine_recall@5 | 0.9646 |
588
+ | cosine_recall@10 | 0.9848 |
589
+ | cosine_ndcg@10 | 0.9171 |
590
+ | cosine_mrr@10 | 0.8949 |
591
+ | **cosine_map@100** | **0.8957** |
592
 
593
  #### Information Retrieval
594
  * Dataset: `dim_64`
595
  * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
596
 
597
+ | Metric | Value |
598
+ |:--------------------|:-----------|
599
+ | cosine_accuracy@1 | 0.8405 |
600
+ | cosine_accuracy@3 | 0.9316 |
601
+ | cosine_accuracy@5 | 0.957 |
602
+ | cosine_accuracy@10 | 0.9823 |
603
+ | cosine_precision@1 | 0.8405 |
604
+ | cosine_precision@3 | 0.3105 |
605
+ | cosine_precision@5 | 0.1914 |
606
+ | cosine_precision@10 | 0.0982 |
607
+ | cosine_recall@1 | 0.8405 |
608
+ | cosine_recall@3 | 0.9316 |
609
+ | cosine_recall@5 | 0.957 |
610
+ | cosine_recall@10 | 0.9823 |
611
+ | cosine_ndcg@10 | 0.9153 |
612
+ | cosine_mrr@10 | 0.8935 |
613
+ | **cosine_map@100** | **0.8943** |
614
 
615
  <!--
616
  ## Bias, Risks and Limitations
 
631
  #### Unnamed Dataset
632
 
633
 
634
+ * Size: 3,550 training samples
635
  * Columns: <code>positive</code> and <code>anchor</code>
636
  * Approximate statistics based on the first 1000 samples:
637
+ | | positive | anchor |
638
+ |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
639
+ | type | string | string |
640
+ | details | <ul><li>min: 17 tokens</li><li>mean: 44.69 tokens</li><li>max: 105 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 18.26 tokens</li><li>max: 30 tokens</li></ul> |
641
  * Samples:
642
+ | positive | anchor |
643
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
644
+ | <code>The total revenue for Google as of 2021 stands at approximately $181 billion, primarily driven by the performance of its advertising and cloud segments, hailing from the Information Technology sector.</code> | <code>What is the total revenue of Google as of 2021?</code> |
645
+ | <code>In Q4 2021, Amazon.com Inc. reported a significant increase in net income, reaching $14.3 billion, due to the surge in online shopping during the pandemic.</code> | <code>What was the Net Income of Amazon.com Inc. in Q4 2021?</code> |
646
+ | <code>Coca-Cola reported full-year 2021 revenue of $37.3 billion, a rise of 13% compared to $33.0 billion in 2020. This was primarily due to strong volume growth as well as improved pricing and mix.</code> | <code>How did Coca-Cola's revenue performance in 2021 measure against its previous year?</code> |
647
  * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
648
  ```json
649
  {
 
676
  - `per_device_eval_batch_size`: 16
677
  - `gradient_accumulation_steps`: 16
678
  - `learning_rate`: 2e-05
679
+ - `num_train_epochs`: 10
680
  - `lr_scheduler_type`: cosine
681
  - `warmup_ratio`: 0.1
682
  - `bf16`: True
 
704
  - `adam_beta2`: 0.999
705
  - `adam_epsilon`: 1e-08
706
  - `max_grad_norm`: 1.0
707
+ - `num_train_epochs`: 10
708
  - `max_steps`: -1
709
  - `lr_scheduler_type`: cosine
710
  - `lr_scheduler_kwargs`: {}
 
800
  </details>
801
 
802
  ### Training Logs
803
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
804
+ |:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
805
+ | 0.8649 | 6 | - | 0.8783 | 0.8651 | 0.8713 | 0.8783 | 0.8439 | 0.8809 |
806
+ | 1.4414 | 10 | 0.7682 | - | - | - | - | - | - |
807
+ | 1.8739 | 13 | - | 0.8918 | 0.8827 | 0.8875 | 0.8918 | 0.8729 | 0.8933 |
808
+ | 2.8829 | 20 | 0.1465 | 0.8948 | 0.8896 | 0.8928 | 0.8961 | 0.8884 | 0.8953 |
809
+ | 3.8919 | 27 | - | 0.8930 | 0.8884 | 0.8917 | 0.8959 | 0.8900 | 0.8945 |
810
+ | 4.3243 | 30 | 0.0646 | - | - | - | - | - | - |
811
+ | 4.9009 | 34 | - | 0.8972 | 0.8883 | 0.8947 | 0.8955 | 0.8925 | 0.8970 |
812
+ | 5.7658 | 40 | 0.0397 | - | - | - | - | - | - |
813
+ | 5.9099 | 41 | - | 0.8964 | 0.8915 | 0.8953 | 0.8943 | 0.8926 | 0.8979 |
814
+ | 6.9189 | 48 | - | 0.8994 | 0.8930 | 0.8966 | 0.8955 | 0.8932 | 0.8974 |
815
+ | 7.2072 | 50 | 0.0319 | - | - | - | - | - | - |
816
+ | 7.9279 | 55 | - | 0.8998 | 0.8945 | 0.8967 | 0.8961 | 0.8943 | 0.8999 |
817
+ | **8.6486** | **60** | **0.0296** | **0.8994** | **0.8957** | **0.898** | **0.8959** | **0.8943** | **0.8999** |
818
 
819
  * The bold row denotes the saved checkpoint.
820
 
 
823
  - Sentence Transformers: 3.0.1
824
  - Transformers: 4.41.2
825
  - PyTorch: 2.1.2+cu121
826
+ - Accelerate: 0.32.1
827
  - Datasets: 2.19.1
828
  - Tokenizers: 0.19.1
829
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2e4009d71caf518182c937a9f2af920ce7e5605e580198931f67d4648a87828b
3
  size 1340612432
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:456f364d78053599abcadcbb14106385840e50fc49e888bc81171c3f6dd4f655
3
  size 1340612432