rbiswasfc commited on
Commit
9a61a8b
·
1 Parent(s): c445eb5

Trained agent for moon lander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 247.30 +/- 18.96
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb83ba3a280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb83ba3a310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb83ba3a3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb83ba3a430>", "_build": "<function ActorCriticPolicy._build at 0x7fb83ba3a4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb83ba3a550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb83ba3a5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb83ba3a670>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb83ba3a700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb83ba3a790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb83ba3a820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb83ba3a8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb83ba3c300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680940365957110372, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDrIr7D31u8DpbDvGxKRruAacE99GghPAAAgD8AAIA/87gsvkCMcz9p15A8u997vo9Edr3ed0k9AAAAAAAAAABm5NA8gh+hPv4PCr3Vuly+REaAPRBQJTwAAAAAAAAAADM3871w5+M+384buxJAib4JLCS8puM+vQAAAAAAAAAAgO2xveG0hLpf45G6U1c2ttc8PDvK0KU5AACAPwAAgD8AEGM78dGjPdjZcTxUpoS+VkrCOwaAdj0AAAAAAAAAACb8Pb4bPxg/on4GPvdzgb4FBeM8yuOePQAAAAAAAAAA5ntivY/aOLoYb2g6/KdTNg4Qgjsuhom5AACAPwAAgD/N28e98OelPy1/K78fC+a+YGvJvOmtRL4AAAAAAAAAAM0s+73DwXa6QsYeuuzh+bWm8LA6WNw5OQAAgD8AAIA/mimhvIWj+LlGtIS5X4QQtupvzjr7c584AACAPwAAgD8NW+O9j75UunPg8ju1WtG1rs5WOpqlyLQAAIA/AACAP5pamL32dHC6AO5AuXe5N7T03NU5MBZiOAAAgD8AAIA/TT+MvSmYe7oWg9m6fNSJtoqUOTsLFfg5AACAPwAAgD/NxHO84byjurBIFLYid5ixx5Rfuhr8KzUAAIA/AACAP1rdj71+36U+zhxzvULtKr4Ho4y9dx+mPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITx+BP/zeZkCUhpRSlIwBbJRN6AOMAXSUR0CW8/y0KJEZdX2UKGgGaAloD0MIvobguAyOYUCUhpRSlGgVTegDaBZHQJb9cDlo11p1fZQoaAZoCWgPQwhQ3zKnSz9oQJSGlFKUaBVN6ANoFkdAlwDaSLZSN3V9lChoBmgJaA9DCHvZdtqaWGVAlIaUUpRoFU3oA2gWR0CXA4QHRkVfdX2UKGgGaAloD0MIlrA2xs6EYECUhpRSlGgVTegDaBZHQJcGOvGIbfh1fZQoaAZoCWgPQwhvtyQH7LtmQJSGlFKUaBVN6ANoFkdAlwjW4ZuQ63V9lChoBmgJaA9DCLBx/bu+2WBAlIaUUpRoFU3oA2gWR0CXCg04iosJdX2UKGgGaAloD0MI5WN3gZK9ZkCUhpRSlGgVTegDaBZHQJcKKMir1dx1fZQoaAZoCWgPQwil2NE4VPJhQJSGlFKUaBVN6ANoFkdAlxONWhh6SnV9lChoBmgJaA9DCDEkJxO3cE5AlIaUUpRoFU0VAWgWR0CXF7KArhBJdX2UKGgGaAloD0MI46jcRC1+Y0CUhpRSlGgVTegDaBZHQJch4bYK6Wh1fZQoaAZoCWgPQwjjqrLvCvNiQJSGlFKUaBVN6ANoFkdAlyQbTc6/7HV9lChoBmgJaA9DCLmMmxrodWRAlIaUUpRoFU3oA2gWR0CXJs6sQumKdX2UKGgGaAloD0MIspyE0peQZUCUhpRSlGgVTegDaBZHQJcoC1ndweh1fZQoaAZoCWgPQwjM0k7N5YJlQJSGlFKUaBVN6ANoFkdAlynSR8twrHV9lChoBmgJaA9DCPrVHCAYU2VAlIaUUpRoFU3oA2gWR0CXKeyrgflqdX2UKGgGaAloD0MIyy4YXPPpY0CUhpRSlGgVTegDaBZHQJc+g6gdwNt1fZQoaAZoCWgPQwjLLEKxlc1gQJSGlFKUaBVN6ANoFkdAlz6RhDw6Q3V9lChoBmgJaA9DCDPiAtAo8VRAlIaUUpRoFU0jAWgWR0CXQX6N2ki2dX2UKGgGaAloD0MID+7O2u0nZ0CUhpRSlGgVTegDaBZHQJdF6ii7Ci11fZQoaAZoCWgPQwjOpbiq7MlnQJSGlFKUaBVN6ANoFkdAl0knV9Wp63V9lChoBmgJaA9DCHvYCwXsxWNAlIaUUpRoFU3oA2gWR0CXS/eb/ffodX2UKGgGaAloD0MI1T4dj5lgZECUhpRSlGgVTegDaBZHQJdSrGLk0aZ1fZQoaAZoCWgPQwgtza0QVlNiQJSGlFKUaBVN6ANoFkdAl1SAVoHs1XV9lChoBmgJaA9DCErtRbQd92RAlIaUUpRoFU3oA2gWR0CXVKs2NvOydX2UKGgGaAloD0MIsTIa+bweb0CUhpRSlGgVTYcBaBZHQJdVDovBacJ1fZQoaAZoCWgPQwiLpUi+0uJxQJSGlFKUaBVNSgNoFkdAl1f92ki2UnV9lChoBmgJaA9DCO7PRUPGL0RAlIaUUpRoFUv7aBZHQJdcORcNYr91fZQoaAZoCWgPQwghHR7C+HhkQJSGlFKUaBVN6ANoFkdAl1z9XtBv73V9lChoBmgJaA9DCIyd8BKczEBAlIaUUpRoFUvxaBZHQJdhjJ+2E011fZQoaAZoCWgPQwjusl93uqsqQJSGlFKUaBVNEAFoFkdAl2LY4yXUpnV9lChoBmgJaA9DCAtjC0GOj2VAlIaUUpRoFU3oA2gWR0CXZvTVDrqudX2UKGgGaAloD0MISPq0iv7QZkCUhpRSlGgVTegDaBZHQJdr6UHIIWx1fZQoaAZoCWgPQwhkrgyqDUpiQJSGlFKUaBVN6ANoFkdAl21Elu3tr3V9lChoBmgJaA9DCHyeP23UZ2VAlIaUUpRoFU3oA2gWR0CXb0E/SpirdX2UKGgGaAloD0MIaw2l9qL9ZUCUhpRSlGgVTegDaBZHQJdvYFX7tRh1fZQoaAZoCWgPQwgAqU2c3MlJQJSGlFKUaBVNGQFoFkdAl3AUWZZ0S3V9lChoBmgJaA9DCGy0HOiheF5AlIaUUpRoFU3oA2gWR0CXdFUWl/H6dX2UKGgGaAloD0MIJPJdSl3rZ0CUhpRSlGgVTegDaBZHQJeK1BE8aGZ1fZQoaAZoCWgPQwjKi0zArzdjQJSGlFKUaBVN6ANoFkdAl5LVX/5tWXV9lChoBmgJaA9DCKPogY/BTV1AlIaUUpRoFU3oA2gWR0CXldwBo24vdX2UKGgGaAloD0MIPBHEeTiXbkCUhpRSlGgVTf4CaBZHQJeZHiYLLIR1fZQoaAZoCWgPQwgJi4o4XRFwQJSGlFKUaBVNhAJoFkdAl5oR7iQ1aXV9lChoBmgJaA9DCCVbXU6JwWRAlIaUUpRoFU3oA2gWR0CXnTpj+aScdX2UKGgGaAloD0MICRueXqn5ZkCUhpRSlGgVTegDaBZHQJeea9lEqlR1fZQoaAZoCWgPQwh0JJf/kFJMQJSGlFKUaBVL62gWR0CXn7HjIaLodX2UKGgGaAloD0MIWFNZFPaMY0CUhpRSlGgVTegDaBZHQJeg8KBun/F1fZQoaAZoCWgPQwgqxY7GIXRjQJSGlFKUaBVN6ANoFkdAl6XVfeDWb3V9lChoBmgJaA9DCFRU/Uon5nBAlIaUUpRoFU2rAmgWR0CXqOzWf9P2dX2UKGgGaAloD0MI5KPFGcOYRECUhpRSlGgVTQMBaBZHQJeqK7J4jbB1fZQoaAZoCWgPQwhhinJp/C44QJSGlFKUaBVL+WgWR0CXrCYDklu4dX2UKGgGaAloD0MIUrmJWppfaECUhpRSlGgVTegDaBZHQJewkmKIi1R1fZQoaAZoCWgPQwia6zTS0rxwQJSGlFKUaBVNtgJoFkdAl7IMgU1yenV9lChoBmgJaA9DCAn7dhIR+GJAlIaUUpRoFU3oA2gWR0CXtdQ1rIo3dX2UKGgGaAloD0MIZMxdS8hgYUCUhpRSlGgVTegDaBZHQJe3OC9RJmN1fZQoaAZoCWgPQwjzcW2oGPJhQJSGlFKUaBVN6ANoFkdAl7lDXnQpnnV9lChoBmgJaA9DCKEPlrGhAGJAlIaUUpRoFU3oA2gWR0CXuWMNc4YKdX2UKGgGaAloD0MIU8xB0JGwcUCUhpRSlGgVTXMCaBZHQJe59tLteD51fZQoaAZoCWgPQwic/YFy28tmQJSGlFKUaBVN6ANoFkdAl7+HIU8FIXV9lChoBmgJaA9DCNXKhF/qLUBAlIaUUpRoFUvIaBZHQJfXPsa86FN1fZQoaAZoCWgPQwgnFviKbg0yQJSGlFKUaBVL7WgWR0CX2+L4N7SidX2UKGgGaAloD0MIY5gTtEn5ZECUhpRSlGgVTegDaBZHQJff+kJrtVt1fZQoaAZoCWgPQwhFvHX+bcxjQJSGlFKUaBVN6ANoFkdAl+O6/IsAenV9lChoBmgJaA9DCHeGqS31jXBAlIaUUpRoFU3VAmgWR0CX5dVwxWT5dX2UKGgGaAloD0MIHebLC7AAYkCUhpRSlGgVTegDaBZHQJfnxZzPrv91fZQoaAZoCWgPQwhpyeNp+XhfQJSGlFKUaBVN6ANoFkdAl+o5TVDrq3V9lChoBmgJaA9DCAA3ixeLcGFAlIaUUpRoFU3oA2gWR0CX7xWfK6nSdX2UKGgGaAloD0MI/DcvTnzbZECUhpRSlGgVTegDaBZHQJfx+0hNdqt1fZQoaAZoCWgPQwiPcjCbAF9oQJSGlFKUaBVN6ANoFkdAl/Ty+g13uHV9lChoBmgJaA9DCEATYcNTzmJAlIaUUpRoFU3oA2gWR0CX+nP+XJHRdX2UKGgGaAloD0MI2ozTEFVKUECUhpRSlGgVS81oFkdAl/qXCsOoYXV9lChoBmgJaA9DCLN9yFsu3GJAlIaUUpRoFU3oA2gWR0CX/CjDsMRZdX2UKGgGaAloD0MI6pEGtzV5YkCUhpRSlGgVTegDaBZHQJgAmydFvyd1fZQoaAZoCWgPQwgabOo8qrRhQJSGlFKUaBVN6ANoFkdAmATOKfnOjnV9lChoBmgJaA9DCPJc34eDsGNAlIaUUpRoFU3oA2gWR0CYBPZtvXK9dX2UKGgGaAloD0MIirDh6ZWSTkCUhpRSlGgVS/1oFkdAmAWu4PPLPnV9lChoBmgJaA9DCA4uHXNeKnBAlIaUUpRoFU3YA2gWR0CYCRjWTX8PdX2UKGgGaAloD0MII7vSMtKwYkCUhpRSlGgVTegDaBZHQJgcrLW7OFB1fZQoaAZoCWgPQwhO7QxTW/RIQJSGlFKUaBVL42gWR0CYHMRRdhRZdX2UKGgGaAloD0MIu9Vz0vu/YkCUhpRSlGgVTegDaBZHQJgghYT0xud1fZQoaAZoCWgPQwi8OzJWm0lAQJSGlFKUaBVL+WgWR0CYIQD0lJHzdX2UKGgGaAloD0MIIvsgy4JLZUCUhpRSlGgVTegDaBZHQJgj5JRO1v51fZQoaAZoCWgPQwgi41Eq4QlnQJSGlFKUaBVN6ANoFkdAmCdpbY9PlHV9lChoBmgJaA9DCA034PNDzGJAlIaUUpRoFU3oA2gWR0CYKYkYoAn2dX2UKGgGaAloD0MI5IOezaqgVECUhpRSlGgVTSMBaBZHQJgpx4KQaJh1fZQoaAZoCWgPQwgR4PQu3t9gQJSGlFKUaBVN6ANoFkdAmCtfV3EAHXV9lChoBmgJaA9DCATnjChtlWNAlIaUUpRoFU3oA2gWR0CYLaS0jTrndX2UKGgGaAloD0MI5X/yd29ubECUhpRSlGgVTZ8BaBZHQJg2VW0Z3s51fZQoaAZoCWgPQwhClgUTfyJmQJSGlFKUaBVN6ANoFkdAmDjbMLWqcXV9lChoBmgJaA9DCNxI2SLpJHFAlIaUUpRoFU2MA2gWR0CYPzSRKYiQdX2UKGgGaAloD0MISkBMwoUMakCUhpRSlGgVTegDaBZHQJhDnBl+Vkd1fZQoaAZoCWgPQwg1QdR9gPRoQJSGlFKUaBVN6ANoFkdAmEO7+glF+nV9lChoBmgJaA9DCDPiAtAoSWpAlIaUUpRoFU1NA2gWR0CYQ+kka/ATdX2UKGgGaAloD0MIBCDu6tWnbkCUhpRSlGgVTQoCaBZHQJhK5ltj0+V1fZQoaAZoCWgPQwiTGtoA7FRhQJSGlFKUaBVN6ANoFkdAmEyADeTFEXV9lChoBmgJaA9DCEBNLVvrHXFAlIaUUpRoFU0qAmgWR0CYTN6fra/RdX2UKGgGaAloD0MI5/9VR47GcECUhpRSlGgVTfYCaBZHQJhNjDaXa8J1fZQoaAZoCWgPQwj61LFKaa9vQJSGlFKUaBVNcQJoFkdAmE3/PX05EXV9lChoBmgJaA9DCN2zrtFy8mRAlIaUUpRoFU3oA2gWR0CYUHDRc/t6dX2UKGgGaAloD0MIbsFSXUDmYkCUhpRSlGgVTegDaBZHQJhT7/YJ3Pl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c5c84a04aa7f03841a6ac5afb9879f4b5a807256be1893dbbea95c87af7314f
3
+ size 147416
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb83ba3a280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb83ba3a310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb83ba3a3a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb83ba3a430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb83ba3a4c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb83ba3a550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb83ba3a5e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb83ba3a670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb83ba3a700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb83ba3a790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb83ba3a820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb83ba3a8b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fb83ba3c300>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1680940365957110372,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDrIr7D31u8DpbDvGxKRruAacE99GghPAAAgD8AAIA/87gsvkCMcz9p15A8u997vo9Edr3ed0k9AAAAAAAAAABm5NA8gh+hPv4PCr3Vuly+REaAPRBQJTwAAAAAAAAAADM3871w5+M+384buxJAib4JLCS8puM+vQAAAAAAAAAAgO2xveG0hLpf45G6U1c2ttc8PDvK0KU5AACAPwAAgD8AEGM78dGjPdjZcTxUpoS+VkrCOwaAdj0AAAAAAAAAACb8Pb4bPxg/on4GPvdzgb4FBeM8yuOePQAAAAAAAAAA5ntivY/aOLoYb2g6/KdTNg4Qgjsuhom5AACAPwAAgD/N28e98OelPy1/K78fC+a+YGvJvOmtRL4AAAAAAAAAAM0s+73DwXa6QsYeuuzh+bWm8LA6WNw5OQAAgD8AAIA/mimhvIWj+LlGtIS5X4QQtupvzjr7c584AACAPwAAgD8NW+O9j75UunPg8ju1WtG1rs5WOpqlyLQAAIA/AACAP5pamL32dHC6AO5AuXe5N7T03NU5MBZiOAAAgD8AAIA/TT+MvSmYe7oWg9m6fNSJtoqUOTsLFfg5AACAPwAAgD/NxHO84byjurBIFLYid5ixx5Rfuhr8KzUAAIA/AACAP1rdj71+36U+zhxzvULtKr4Ho4y9dx+mPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITx+BP/zeZkCUhpRSlIwBbJRN6AOMAXSUR0CW8/y0KJEZdX2UKGgGaAloD0MIvobguAyOYUCUhpRSlGgVTegDaBZHQJb9cDlo11p1fZQoaAZoCWgPQwhQ3zKnSz9oQJSGlFKUaBVN6ANoFkdAlwDaSLZSN3V9lChoBmgJaA9DCHvZdtqaWGVAlIaUUpRoFU3oA2gWR0CXA4QHRkVfdX2UKGgGaAloD0MIlrA2xs6EYECUhpRSlGgVTegDaBZHQJcGOvGIbfh1fZQoaAZoCWgPQwhvtyQH7LtmQJSGlFKUaBVN6ANoFkdAlwjW4ZuQ63V9lChoBmgJaA9DCLBx/bu+2WBAlIaUUpRoFU3oA2gWR0CXCg04iosJdX2UKGgGaAloD0MI5WN3gZK9ZkCUhpRSlGgVTegDaBZHQJcKKMir1dx1fZQoaAZoCWgPQwil2NE4VPJhQJSGlFKUaBVN6ANoFkdAlxONWhh6SnV9lChoBmgJaA9DCDEkJxO3cE5AlIaUUpRoFU0VAWgWR0CXF7KArhBJdX2UKGgGaAloD0MI46jcRC1+Y0CUhpRSlGgVTegDaBZHQJch4bYK6Wh1fZQoaAZoCWgPQwjjqrLvCvNiQJSGlFKUaBVN6ANoFkdAlyQbTc6/7HV9lChoBmgJaA9DCLmMmxrodWRAlIaUUpRoFU3oA2gWR0CXJs6sQumKdX2UKGgGaAloD0MIspyE0peQZUCUhpRSlGgVTegDaBZHQJcoC1ndweh1fZQoaAZoCWgPQwjM0k7N5YJlQJSGlFKUaBVN6ANoFkdAlynSR8twrHV9lChoBmgJaA9DCPrVHCAYU2VAlIaUUpRoFU3oA2gWR0CXKeyrgflqdX2UKGgGaAloD0MIyy4YXPPpY0CUhpRSlGgVTegDaBZHQJc+g6gdwNt1fZQoaAZoCWgPQwjLLEKxlc1gQJSGlFKUaBVN6ANoFkdAlz6RhDw6Q3V9lChoBmgJaA9DCDPiAtAo8VRAlIaUUpRoFU0jAWgWR0CXQX6N2ki2dX2UKGgGaAloD0MID+7O2u0nZ0CUhpRSlGgVTegDaBZHQJdF6ii7Ci11fZQoaAZoCWgPQwjOpbiq7MlnQJSGlFKUaBVN6ANoFkdAl0knV9Wp63V9lChoBmgJaA9DCHvYCwXsxWNAlIaUUpRoFU3oA2gWR0CXS/eb/ffodX2UKGgGaAloD0MI1T4dj5lgZECUhpRSlGgVTegDaBZHQJdSrGLk0aZ1fZQoaAZoCWgPQwgtza0QVlNiQJSGlFKUaBVN6ANoFkdAl1SAVoHs1XV9lChoBmgJaA9DCErtRbQd92RAlIaUUpRoFU3oA2gWR0CXVKs2NvOydX2UKGgGaAloD0MIsTIa+bweb0CUhpRSlGgVTYcBaBZHQJdVDovBacJ1fZQoaAZoCWgPQwiLpUi+0uJxQJSGlFKUaBVNSgNoFkdAl1f92ki2UnV9lChoBmgJaA9DCO7PRUPGL0RAlIaUUpRoFUv7aBZHQJdcORcNYr91fZQoaAZoCWgPQwghHR7C+HhkQJSGlFKUaBVN6ANoFkdAl1z9XtBv73V9lChoBmgJaA9DCIyd8BKczEBAlIaUUpRoFUvxaBZHQJdhjJ+2E011fZQoaAZoCWgPQwjusl93uqsqQJSGlFKUaBVNEAFoFkdAl2LY4yXUpnV9lChoBmgJaA9DCAtjC0GOj2VAlIaUUpRoFU3oA2gWR0CXZvTVDrqudX2UKGgGaAloD0MISPq0iv7QZkCUhpRSlGgVTegDaBZHQJdr6UHIIWx1fZQoaAZoCWgPQwhkrgyqDUpiQJSGlFKUaBVN6ANoFkdAl21Elu3tr3V9lChoBmgJaA9DCHyeP23UZ2VAlIaUUpRoFU3oA2gWR0CXb0E/SpirdX2UKGgGaAloD0MIaw2l9qL9ZUCUhpRSlGgVTegDaBZHQJdvYFX7tRh1fZQoaAZoCWgPQwgAqU2c3MlJQJSGlFKUaBVNGQFoFkdAl3AUWZZ0S3V9lChoBmgJaA9DCGy0HOiheF5AlIaUUpRoFU3oA2gWR0CXdFUWl/H6dX2UKGgGaAloD0MIJPJdSl3rZ0CUhpRSlGgVTegDaBZHQJeK1BE8aGZ1fZQoaAZoCWgPQwjKi0zArzdjQJSGlFKUaBVN6ANoFkdAl5LVX/5tWXV9lChoBmgJaA9DCKPogY/BTV1AlIaUUpRoFU3oA2gWR0CXldwBo24vdX2UKGgGaAloD0MIPBHEeTiXbkCUhpRSlGgVTf4CaBZHQJeZHiYLLIR1fZQoaAZoCWgPQwgJi4o4XRFwQJSGlFKUaBVNhAJoFkdAl5oR7iQ1aXV9lChoBmgJaA9DCCVbXU6JwWRAlIaUUpRoFU3oA2gWR0CXnTpj+aScdX2UKGgGaAloD0MICRueXqn5ZkCUhpRSlGgVTegDaBZHQJeea9lEqlR1fZQoaAZoCWgPQwh0JJf/kFJMQJSGlFKUaBVL62gWR0CXn7HjIaLodX2UKGgGaAloD0MIWFNZFPaMY0CUhpRSlGgVTegDaBZHQJeg8KBun/F1fZQoaAZoCWgPQwgqxY7GIXRjQJSGlFKUaBVN6ANoFkdAl6XVfeDWb3V9lChoBmgJaA9DCFRU/Uon5nBAlIaUUpRoFU2rAmgWR0CXqOzWf9P2dX2UKGgGaAloD0MI5KPFGcOYRECUhpRSlGgVTQMBaBZHQJeqK7J4jbB1fZQoaAZoCWgPQwhhinJp/C44QJSGlFKUaBVL+WgWR0CXrCYDklu4dX2UKGgGaAloD0MIUrmJWppfaECUhpRSlGgVTegDaBZHQJewkmKIi1R1fZQoaAZoCWgPQwia6zTS0rxwQJSGlFKUaBVNtgJoFkdAl7IMgU1yenV9lChoBmgJaA9DCAn7dhIR+GJAlIaUUpRoFU3oA2gWR0CXtdQ1rIo3dX2UKGgGaAloD0MIZMxdS8hgYUCUhpRSlGgVTegDaBZHQJe3OC9RJmN1fZQoaAZoCWgPQwjzcW2oGPJhQJSGlFKUaBVN6ANoFkdAl7lDXnQpnnV9lChoBmgJaA9DCKEPlrGhAGJAlIaUUpRoFU3oA2gWR0CXuWMNc4YKdX2UKGgGaAloD0MIU8xB0JGwcUCUhpRSlGgVTXMCaBZHQJe59tLteD51fZQoaAZoCWgPQwic/YFy28tmQJSGlFKUaBVN6ANoFkdAl7+HIU8FIXV9lChoBmgJaA9DCNXKhF/qLUBAlIaUUpRoFUvIaBZHQJfXPsa86FN1fZQoaAZoCWgPQwgnFviKbg0yQJSGlFKUaBVL7WgWR0CX2+L4N7SidX2UKGgGaAloD0MIY5gTtEn5ZECUhpRSlGgVTegDaBZHQJff+kJrtVt1fZQoaAZoCWgPQwhFvHX+bcxjQJSGlFKUaBVN6ANoFkdAl+O6/IsAenV9lChoBmgJaA9DCHeGqS31jXBAlIaUUpRoFU3VAmgWR0CX5dVwxWT5dX2UKGgGaAloD0MIHebLC7AAYkCUhpRSlGgVTegDaBZHQJfnxZzPrv91fZQoaAZoCWgPQwhpyeNp+XhfQJSGlFKUaBVN6ANoFkdAl+o5TVDrq3V9lChoBmgJaA9DCAA3ixeLcGFAlIaUUpRoFU3oA2gWR0CX7xWfK6nSdX2UKGgGaAloD0MI/DcvTnzbZECUhpRSlGgVTegDaBZHQJfx+0hNdqt1fZQoaAZoCWgPQwiPcjCbAF9oQJSGlFKUaBVN6ANoFkdAl/Ty+g13uHV9lChoBmgJaA9DCEATYcNTzmJAlIaUUpRoFU3oA2gWR0CX+nP+XJHRdX2UKGgGaAloD0MI2ozTEFVKUECUhpRSlGgVS81oFkdAl/qXCsOoYXV9lChoBmgJaA9DCLN9yFsu3GJAlIaUUpRoFU3oA2gWR0CX/CjDsMRZdX2UKGgGaAloD0MI6pEGtzV5YkCUhpRSlGgVTegDaBZHQJgAmydFvyd1fZQoaAZoCWgPQwgabOo8qrRhQJSGlFKUaBVN6ANoFkdAmATOKfnOjnV9lChoBmgJaA9DCPJc34eDsGNAlIaUUpRoFU3oA2gWR0CYBPZtvXK9dX2UKGgGaAloD0MIirDh6ZWSTkCUhpRSlGgVS/1oFkdAmAWu4PPLPnV9lChoBmgJaA9DCA4uHXNeKnBAlIaUUpRoFU3YA2gWR0CYCRjWTX8PdX2UKGgGaAloD0MII7vSMtKwYkCUhpRSlGgVTegDaBZHQJgcrLW7OFB1fZQoaAZoCWgPQwhO7QxTW/RIQJSGlFKUaBVL42gWR0CYHMRRdhRZdX2UKGgGaAloD0MIu9Vz0vu/YkCUhpRSlGgVTegDaBZHQJgghYT0xud1fZQoaAZoCWgPQwi8OzJWm0lAQJSGlFKUaBVL+WgWR0CYIQD0lJHzdX2UKGgGaAloD0MIIvsgy4JLZUCUhpRSlGgVTegDaBZHQJgj5JRO1v51fZQoaAZoCWgPQwgi41Eq4QlnQJSGlFKUaBVN6ANoFkdAmCdpbY9PlHV9lChoBmgJaA9DCA034PNDzGJAlIaUUpRoFU3oA2gWR0CYKYkYoAn2dX2UKGgGaAloD0MI5IOezaqgVECUhpRSlGgVTSMBaBZHQJgpx4KQaJh1fZQoaAZoCWgPQwgR4PQu3t9gQJSGlFKUaBVN6ANoFkdAmCtfV3EAHXV9lChoBmgJaA9DCATnjChtlWNAlIaUUpRoFU3oA2gWR0CYLaS0jTrndX2UKGgGaAloD0MI5X/yd29ubECUhpRSlGgVTZ8BaBZHQJg2VW0Z3s51fZQoaAZoCWgPQwhClgUTfyJmQJSGlFKUaBVN6ANoFkdAmDjbMLWqcXV9lChoBmgJaA9DCNxI2SLpJHFAlIaUUpRoFU2MA2gWR0CYPzSRKYiQdX2UKGgGaAloD0MISkBMwoUMakCUhpRSlGgVTegDaBZHQJhDnBl+Vkd1fZQoaAZoCWgPQwg1QdR9gPRoQJSGlFKUaBVN6ANoFkdAmEO7+glF+nV9lChoBmgJaA9DCDPiAtAoSWpAlIaUUpRoFU1NA2gWR0CYQ+kka/ATdX2UKGgGaAloD0MIBCDu6tWnbkCUhpRSlGgVTQoCaBZHQJhK5ltj0+V1fZQoaAZoCWgPQwiTGtoA7FRhQJSGlFKUaBVN6ANoFkdAmEyADeTFEXV9lChoBmgJaA9DCEBNLVvrHXFAlIaUUpRoFU0qAmgWR0CYTN6fra/RdX2UKGgGaAloD0MI5/9VR47GcECUhpRSlGgVTfYCaBZHQJhNjDaXa8J1fZQoaAZoCWgPQwj61LFKaa9vQJSGlFKUaBVNcQJoFkdAmE3/PX05EXV9lChoBmgJaA9DCN2zrtFy8mRAlIaUUpRoFU3oA2gWR0CYUHDRc/t6dX2UKGgGaAloD0MIbsFSXUDmYkCUhpRSlGgVTegDaBZHQJhT7/YJ3Pl1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b2a84a309323aaf8de1191c7a082a6f87264466fed1a676fa7f570f6349cd7e
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:273e9e5ecd64af5f27e39b1033671a37d736b2755383d5bdb9968c12b7969746
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (212 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 247.3004580822526, "std_reward": 18.96388772306996, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-08T08:21:30.056715"}