Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- checkpoint-10800/config.json +44 -0
- checkpoint-10800/generation_config.json +7 -0
- checkpoint-10800/merges.txt +0 -0
- checkpoint-10800/model.safetensors +3 -0
- checkpoint-10800/optimizer.pt +3 -0
- checkpoint-10800/rng_state.pth +3 -0
- checkpoint-10800/scheduler.pt +3 -0
- checkpoint-10800/special_tokens_map.json +28 -0
- checkpoint-10800/tokenizer.json +0 -0
- checkpoint-10800/tokenizer_config.json +155 -0
- checkpoint-10800/trainer_state.json +886 -0
- checkpoint-10800/training_args.bin +3 -0
- checkpoint-10800/ultravox_config.py +173 -0
- checkpoint-10800/ultravox_model.py +754 -0
- checkpoint-10800/vocab.json +0 -0
- checkpoint-14400/config.json +44 -0
- checkpoint-14400/generation_config.json +7 -0
- checkpoint-14400/merges.txt +0 -0
- checkpoint-14400/model.safetensors +3 -0
- checkpoint-14400/optimizer.pt +3 -0
- checkpoint-14400/rng_state.pth +3 -0
- checkpoint-14400/scheduler.pt +3 -0
- checkpoint-14400/special_tokens_map.json +28 -0
- checkpoint-14400/tokenizer.json +0 -0
- checkpoint-14400/tokenizer_config.json +155 -0
- checkpoint-14400/trainer_state.json +1174 -0
- checkpoint-14400/training_args.bin +3 -0
- checkpoint-14400/ultravox_config.py +173 -0
- checkpoint-14400/ultravox_model.py +754 -0
- checkpoint-14400/vocab.json +0 -0
- checkpoint-3600/config.json +44 -0
- checkpoint-3600/generation_config.json +7 -0
- checkpoint-3600/merges.txt +0 -0
- checkpoint-3600/model.safetensors +3 -0
- checkpoint-3600/optimizer.pt +3 -0
- checkpoint-3600/rng_state.pth +3 -0
- checkpoint-3600/scheduler.pt +3 -0
- checkpoint-3600/special_tokens_map.json +28 -0
- checkpoint-3600/tokenizer.json +0 -0
- checkpoint-3600/tokenizer_config.json +155 -0
- checkpoint-3600/trainer_state.json +319 -0
- checkpoint-3600/training_args.bin +3 -0
- checkpoint-3600/ultravox_config.py +173 -0
- checkpoint-3600/ultravox_model.py +754 -0
- checkpoint-3600/vocab.json +0 -0
- checkpoint-7200/config.json +44 -0
- checkpoint-7200/generation_config.json +7 -0
- checkpoint-7200/merges.txt +0 -0
- checkpoint-7200/model.safetensors +3 -0
- checkpoint-7200/optimizer.pt +3 -0
checkpoint-10800/config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"UltravoxModel"
|
4 |
+
],
|
5 |
+
"audio_latency_block_size": null,
|
6 |
+
"audio_model_id": "openai/whisper-large-v3-turbo",
|
7 |
+
"audio_model_lora_config": {
|
8 |
+
"lora_alpha": 8,
|
9 |
+
"r": 0,
|
10 |
+
"target_modules": [
|
11 |
+
"k_proj",
|
12 |
+
"q_proj",
|
13 |
+
"linear_k",
|
14 |
+
"linear_q"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
"auto_map": {
|
18 |
+
"AutoConfig": "ultravox_config.UltravoxConfig",
|
19 |
+
"AutoModel": "ultravox_model.UltravoxModel"
|
20 |
+
},
|
21 |
+
"hidden_size": 4096,
|
22 |
+
"ignore_index": -100,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"model_type": "ultravox",
|
25 |
+
"norm_init": 0.4,
|
26 |
+
"pad_token_id": 2,
|
27 |
+
"projector_act": "swiglu",
|
28 |
+
"projector_ln_mid": false,
|
29 |
+
"stack_factor": 8,
|
30 |
+
"text_model_id": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
31 |
+
"text_model_lora_config": {
|
32 |
+
"lora_alpha": 8,
|
33 |
+
"r": 0,
|
34 |
+
"target_modules": [
|
35 |
+
"k_proj",
|
36 |
+
"q_proj",
|
37 |
+
"linear_k",
|
38 |
+
"linear_q"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
"torch_dtype": "bfloat16",
|
42 |
+
"transformers_version": "4.47.0",
|
43 |
+
"vocab_size": 49152
|
44 |
+
}
|
checkpoint-10800/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 2,
|
6 |
+
"transformers_version": "4.47.0"
|
7 |
+
}
|
checkpoint-10800/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-10800/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:599403a4e51e9462dec7603c72d5f6f03b3a9b3f316f6ecda2c082e6b9885566
|
3 |
+
size 92299736
|
checkpoint-10800/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:802dc6c7082cb34cf728621561091d75e2351c60ad7abcbb07c6055f7cf2433e
|
3 |
+
size 184602962
|
checkpoint-10800/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d902b2fc21ae01a2e62068637a291fad3a067be62ae6dd561ab05d3c42c1f44d
|
3 |
+
size 14244
|
checkpoint-10800/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01ae122cbb1630c5e9128a1def009fb9fe6db25bf8dbd0de4ec680be8f1568e1
|
3 |
+
size 1064
|
checkpoint-10800/special_tokens_map.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "<|im_start|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<|im_end|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"pad_token": "<|im_end|>",
|
21 |
+
"unk_token": {
|
22 |
+
"content": "<|endoftext|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
}
|
28 |
+
}
|
checkpoint-10800/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-10800/tokenizer_config.json
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<repo_name>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "<reponame>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"5": {
|
45 |
+
"content": "<file_sep>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"6": {
|
53 |
+
"content": "<filename>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"7": {
|
61 |
+
"content": "<gh_stars>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"8": {
|
69 |
+
"content": "<issue_start>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"9": {
|
77 |
+
"content": "<issue_comment>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"10": {
|
85 |
+
"content": "<issue_closed>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"11": {
|
93 |
+
"content": "<jupyter_start>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"12": {
|
101 |
+
"content": "<jupyter_text>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"13": {
|
109 |
+
"content": "<jupyter_code>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"14": {
|
117 |
+
"content": "<jupyter_output>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"15": {
|
125 |
+
"content": "<jupyter_script>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"16": {
|
133 |
+
"content": "<empty_output>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
}
|
140 |
+
},
|
141 |
+
"additional_special_tokens": [
|
142 |
+
"<|im_start|>",
|
143 |
+
"<|im_end|>"
|
144 |
+
],
|
145 |
+
"bos_token": "<|im_start|>",
|
146 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
147 |
+
"clean_up_tokenization_spaces": false,
|
148 |
+
"eos_token": "<|im_end|>",
|
149 |
+
"extra_special_tokens": {},
|
150 |
+
"model_max_length": 8192,
|
151 |
+
"pad_token": "<|im_end|>",
|
152 |
+
"tokenizer_class": "GPT2Tokenizer",
|
153 |
+
"unk_token": "<|endoftext|>",
|
154 |
+
"vocab_size": 49152
|
155 |
+
}
|
checkpoint-10800/trainer_state.json
ADDED
@@ -0,0 +1,886 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.08988464803502172,
|
5 |
+
"eval_steps": 1000,
|
6 |
+
"global_step": 10800,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 8.322652595835345e-06,
|
13 |
+
"grad_norm": 14.9375,
|
14 |
+
"learning_rate": 2e-06,
|
15 |
+
"loss": 0.6484,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0008322652595835345,
|
20 |
+
"grad_norm": 0.3671875,
|
21 |
+
"learning_rate": 0.0002,
|
22 |
+
"loss": 0.4345,
|
23 |
+
"step": 100
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.001664530519167069,
|
27 |
+
"grad_norm": 0.1689453125,
|
28 |
+
"learning_rate": 0.0004,
|
29 |
+
"loss": 0.2537,
|
30 |
+
"step": 200
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0024967957787506035,
|
34 |
+
"grad_norm": 0.55859375,
|
35 |
+
"learning_rate": 0.0006,
|
36 |
+
"loss": 0.2344,
|
37 |
+
"step": 300
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.003329061038334138,
|
41 |
+
"grad_norm": 0.154296875,
|
42 |
+
"learning_rate": 0.0008,
|
43 |
+
"loss": 0.222,
|
44 |
+
"step": 400
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.004161326297917672,
|
48 |
+
"grad_norm": 0.126953125,
|
49 |
+
"learning_rate": 0.001,
|
50 |
+
"loss": 0.2142,
|
51 |
+
"step": 500
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.004993591557501207,
|
55 |
+
"grad_norm": 0.12353515625,
|
56 |
+
"learning_rate": 0.0012,
|
57 |
+
"loss": 0.2011,
|
58 |
+
"step": 600
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.005825856817084741,
|
62 |
+
"grad_norm": 0.10693359375,
|
63 |
+
"learning_rate": 0.0014,
|
64 |
+
"loss": 0.1897,
|
65 |
+
"step": 700
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.006658122076668276,
|
69 |
+
"grad_norm": 0.10595703125,
|
70 |
+
"learning_rate": 0.0016,
|
71 |
+
"loss": 0.1775,
|
72 |
+
"step": 800
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.0074903873362518105,
|
76 |
+
"grad_norm": 0.0859375,
|
77 |
+
"learning_rate": 0.0018000000000000002,
|
78 |
+
"loss": 0.1615,
|
79 |
+
"step": 900
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.008322652595835344,
|
83 |
+
"grad_norm": 0.083984375,
|
84 |
+
"learning_rate": 0.002,
|
85 |
+
"loss": 0.1444,
|
86 |
+
"step": 1000
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.008322652595835344,
|
90 |
+
"eval_peoplespeech-clean-transcription_loss": 2.2110702991485596,
|
91 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
92 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.5405,
|
93 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.708,
|
94 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.839,
|
95 |
+
"step": 1000
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.009154917855418878,
|
99 |
+
"grad_norm": 0.0771484375,
|
100 |
+
"learning_rate": 0.001999725185109816,
|
101 |
+
"loss": 0.1323,
|
102 |
+
"step": 1100
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 0.009987183115002414,
|
106 |
+
"grad_norm": 0.083984375,
|
107 |
+
"learning_rate": 0.0019989008914857113,
|
108 |
+
"loss": 0.1242,
|
109 |
+
"step": 1200
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.010819448374585948,
|
113 |
+
"grad_norm": 0.07861328125,
|
114 |
+
"learning_rate": 0.00199752757218401,
|
115 |
+
"loss": 0.1162,
|
116 |
+
"step": 1300
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.011651713634169482,
|
120 |
+
"grad_norm": 0.07275390625,
|
121 |
+
"learning_rate": 0.001995605982021898,
|
122 |
+
"loss": 0.1128,
|
123 |
+
"step": 1400
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.012483978893753018,
|
127 |
+
"grad_norm": 0.07666015625,
|
128 |
+
"learning_rate": 0.0019931371771625545,
|
129 |
+
"loss": 0.1094,
|
130 |
+
"step": 1500
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.013316244153336551,
|
134 |
+
"grad_norm": 0.06201171875,
|
135 |
+
"learning_rate": 0.001990122514534651,
|
136 |
+
"loss": 0.1052,
|
137 |
+
"step": 1600
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.014148509412920085,
|
141 |
+
"grad_norm": 0.058837890625,
|
142 |
+
"learning_rate": 0.0019865636510865464,
|
143 |
+
"loss": 0.1022,
|
144 |
+
"step": 1700
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.014980774672503621,
|
148 |
+
"grad_norm": 0.0625,
|
149 |
+
"learning_rate": 0.001982462542875576,
|
150 |
+
"loss": 0.1011,
|
151 |
+
"step": 1800
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.015813039932087155,
|
155 |
+
"grad_norm": 0.06787109375,
|
156 |
+
"learning_rate": 0.001977821443992945,
|
157 |
+
"loss": 0.0983,
|
158 |
+
"step": 1900
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.01664530519167069,
|
162 |
+
"grad_norm": 0.0537109375,
|
163 |
+
"learning_rate": 0.001972642905324813,
|
164 |
+
"loss": 0.0975,
|
165 |
+
"step": 2000
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.01664530519167069,
|
169 |
+
"eval_peoplespeech-clean-transcription_loss": 1.6914767026901245,
|
170 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
171 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.5301,
|
172 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.716,
|
173 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.839,
|
174 |
+
"step": 2000
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 0.017477570451254223,
|
178 |
+
"grad_norm": 0.05859375,
|
179 |
+
"learning_rate": 0.0019669297731502505,
|
180 |
+
"loss": 0.0947,
|
181 |
+
"step": 2100
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.018309835710837757,
|
185 |
+
"grad_norm": 0.062255859375,
|
186 |
+
"learning_rate": 0.00196068518757684,
|
187 |
+
"loss": 0.0935,
|
188 |
+
"step": 2200
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.019142100970421294,
|
192 |
+
"grad_norm": 0.059326171875,
|
193 |
+
"learning_rate": 0.001953912580814779,
|
194 |
+
"loss": 0.0911,
|
195 |
+
"step": 2300
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.019974366230004828,
|
199 |
+
"grad_norm": 0.060302734375,
|
200 |
+
"learning_rate": 0.0019466156752904343,
|
201 |
+
"loss": 0.0904,
|
202 |
+
"step": 2400
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"epoch": 0.020806631489588362,
|
206 |
+
"grad_norm": 0.0615234375,
|
207 |
+
"learning_rate": 0.0019387984816003866,
|
208 |
+
"loss": 0.0882,
|
209 |
+
"step": 2500
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.021638896749171896,
|
213 |
+
"grad_norm": 0.056884765625,
|
214 |
+
"learning_rate": 0.0019304652963070869,
|
215 |
+
"loss": 0.0874,
|
216 |
+
"step": 2600
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 0.02247116200875543,
|
220 |
+
"grad_norm": 0.049072265625,
|
221 |
+
"learning_rate": 0.0019216206995773372,
|
222 |
+
"loss": 0.0871,
|
223 |
+
"step": 2700
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"epoch": 0.023303427268338964,
|
227 |
+
"grad_norm": 0.053955078125,
|
228 |
+
"learning_rate": 0.0019122695526648968,
|
229 |
+
"loss": 0.0856,
|
230 |
+
"step": 2800
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.0241356925279225,
|
234 |
+
"grad_norm": 0.05517578125,
|
235 |
+
"learning_rate": 0.0019024169952385887,
|
236 |
+
"loss": 0.0845,
|
237 |
+
"step": 2900
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.024967957787506035,
|
241 |
+
"grad_norm": 0.0546875,
|
242 |
+
"learning_rate": 0.0018920684425573864,
|
243 |
+
"loss": 0.0852,
|
244 |
+
"step": 3000
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"epoch": 0.024967957787506035,
|
248 |
+
"eval_peoplespeech-clean-transcription_loss": 1.6414048671722412,
|
249 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
250 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.8151,
|
251 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.521,
|
252 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.815,
|
253 |
+
"step": 3000
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 0.02580022304708957,
|
257 |
+
"grad_norm": 0.052978515625,
|
258 |
+
"learning_rate": 0.0018812295824940284,
|
259 |
+
"loss": 0.0836,
|
260 |
+
"step": 3100
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.026632488306673103,
|
264 |
+
"grad_norm": 0.05126953125,
|
265 |
+
"learning_rate": 0.0018699063724087904,
|
266 |
+
"loss": 0.0821,
|
267 |
+
"step": 3200
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.027464753566256637,
|
271 |
+
"grad_norm": 0.056884765625,
|
272 |
+
"learning_rate": 0.0018581050358751443,
|
273 |
+
"loss": 0.0816,
|
274 |
+
"step": 3300
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 0.02829701882584017,
|
278 |
+
"grad_norm": 0.045654296875,
|
279 |
+
"learning_rate": 0.0018458320592590974,
|
280 |
+
"loss": 0.0814,
|
281 |
+
"step": 3400
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.029129284085423705,
|
285 |
+
"grad_norm": 0.04638671875,
|
286 |
+
"learning_rate": 0.0018330941881540914,
|
287 |
+
"loss": 0.0791,
|
288 |
+
"step": 3500
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 0.029961549345007242,
|
292 |
+
"grad_norm": 0.043212890625,
|
293 |
+
"learning_rate": 0.0018198984236734246,
|
294 |
+
"loss": 0.0804,
|
295 |
+
"step": 3600
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"epoch": 0.030793814604590776,
|
299 |
+
"grad_norm": 0.054931640625,
|
300 |
+
"learning_rate": 0.0018062520186022297,
|
301 |
+
"loss": 0.0802,
|
302 |
+
"step": 3700
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.03162607986417431,
|
306 |
+
"grad_norm": 0.054931640625,
|
307 |
+
"learning_rate": 0.0017921624734111292,
|
308 |
+
"loss": 0.0805,
|
309 |
+
"step": 3800
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.032458345123757844,
|
313 |
+
"grad_norm": 0.048095703125,
|
314 |
+
"learning_rate": 0.001777637532133752,
|
315 |
+
"loss": 0.079,
|
316 |
+
"step": 3900
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 0.03329061038334138,
|
320 |
+
"grad_norm": 0.0458984375,
|
321 |
+
"learning_rate": 0.0017626851781103819,
|
322 |
+
"loss": 0.0759,
|
323 |
+
"step": 4000
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.03329061038334138,
|
327 |
+
"eval_peoplespeech-clean-transcription_loss": 1.5952188968658447,
|
328 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
329 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.4647,
|
330 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.762,
|
331 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.845,
|
332 |
+
"step": 4000
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.03412287564292491,
|
336 |
+
"grad_norm": 0.06494140625,
|
337 |
+
"learning_rate": 0.001747313629600077,
|
338 |
+
"loss": 0.0774,
|
339 |
+
"step": 4100
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.034955140902508446,
|
343 |
+
"grad_norm": 0.043701171875,
|
344 |
+
"learning_rate": 0.001731531335263669,
|
345 |
+
"loss": 0.0774,
|
346 |
+
"step": 4200
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.03578740616209198,
|
350 |
+
"grad_norm": 0.048095703125,
|
351 |
+
"learning_rate": 0.0017153469695201276,
|
352 |
+
"loss": 0.0769,
|
353 |
+
"step": 4300
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.03661967142167551,
|
357 |
+
"grad_norm": 0.051513671875,
|
358 |
+
"learning_rate": 0.0016987694277788418,
|
359 |
+
"loss": 0.0763,
|
360 |
+
"step": 4400
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.037451936681259054,
|
364 |
+
"grad_norm": 0.047607421875,
|
365 |
+
"learning_rate": 0.001681807821550438,
|
366 |
+
"loss": 0.0774,
|
367 |
+
"step": 4500
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.03828420194084259,
|
371 |
+
"grad_norm": 0.040283203125,
|
372 |
+
"learning_rate": 0.0016644714734388218,
|
373 |
+
"loss": 0.0748,
|
374 |
+
"step": 4600
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.03911646720042612,
|
378 |
+
"grad_norm": 0.05419921875,
|
379 |
+
"learning_rate": 0.0016467699120171987,
|
380 |
+
"loss": 0.0755,
|
381 |
+
"step": 4700
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.039948732460009656,
|
385 |
+
"grad_norm": 0.048828125,
|
386 |
+
"learning_rate": 0.001628712866590885,
|
387 |
+
"loss": 0.0732,
|
388 |
+
"step": 4800
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.04078099771959319,
|
392 |
+
"grad_norm": 0.046875,
|
393 |
+
"learning_rate": 0.0016103102618497923,
|
394 |
+
"loss": 0.0757,
|
395 |
+
"step": 4900
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.041613262979176724,
|
399 |
+
"grad_norm": 0.042236328125,
|
400 |
+
"learning_rate": 0.0015915722124135226,
|
401 |
+
"loss": 0.0738,
|
402 |
+
"step": 5000
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.041613262979176724,
|
406 |
+
"eval_peoplespeech-clean-transcription_loss": 1.5546748638153076,
|
407 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
408 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.345,
|
409 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.849,
|
410 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.856,
|
411 |
+
"step": 5000
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.04244552823876026,
|
415 |
+
"grad_norm": 0.045166015625,
|
416 |
+
"learning_rate": 0.001572509017272072,
|
417 |
+
"loss": 0.0742,
|
418 |
+
"step": 5100
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.04327779349834379,
|
422 |
+
"grad_norm": 0.0556640625,
|
423 |
+
"learning_rate": 0.0015531311541251993,
|
424 |
+
"loss": 0.0746,
|
425 |
+
"step": 5200
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.044110058757927326,
|
429 |
+
"grad_norm": 0.043212890625,
|
430 |
+
"learning_rate": 0.0015334492736235703,
|
431 |
+
"loss": 0.073,
|
432 |
+
"step": 5300
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 0.04494232401751086,
|
436 |
+
"grad_norm": 0.044921875,
|
437 |
+
"learning_rate": 0.0015134741935148419,
|
438 |
+
"loss": 0.0727,
|
439 |
+
"step": 5400
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 0.045774589277094394,
|
443 |
+
"grad_norm": 0.05029296875,
|
444 |
+
"learning_rate": 0.0014932168926979072,
|
445 |
+
"loss": 0.0726,
|
446 |
+
"step": 5500
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.04660685453667793,
|
450 |
+
"grad_norm": 0.048095703125,
|
451 |
+
"learning_rate": 0.0014726885051885652,
|
452 |
+
"loss": 0.0718,
|
453 |
+
"step": 5600
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.04743911979626146,
|
457 |
+
"grad_norm": 0.046875,
|
458 |
+
"learning_rate": 0.0014519003139999338,
|
459 |
+
"loss": 0.0736,
|
460 |
+
"step": 5700
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 0.048271385055845,
|
464 |
+
"grad_norm": 0.051513671875,
|
465 |
+
"learning_rate": 0.0014308637449409706,
|
466 |
+
"loss": 0.0724,
|
467 |
+
"step": 5800
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.049103650315428536,
|
471 |
+
"grad_norm": 0.053955078125,
|
472 |
+
"learning_rate": 0.0014095903603365066,
|
473 |
+
"loss": 0.0724,
|
474 |
+
"step": 5900
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.04993591557501207,
|
478 |
+
"grad_norm": 0.037841796875,
|
479 |
+
"learning_rate": 0.0013880918526722496,
|
480 |
+
"loss": 0.071,
|
481 |
+
"step": 6000
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 0.04993591557501207,
|
485 |
+
"eval_peoplespeech-clean-transcription_loss": 1.5297455787658691,
|
486 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
487 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.3364,
|
488 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.855,
|
489 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.857,
|
490 |
+
"step": 6000
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 0.050768180834595604,
|
494 |
+
"grad_norm": 0.05029296875,
|
495 |
+
"learning_rate": 0.0013663800381682463,
|
496 |
+
"loss": 0.0713,
|
497 |
+
"step": 6100
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.05160044609417914,
|
501 |
+
"grad_norm": 0.037109375,
|
502 |
+
"learning_rate": 0.0013444668502843329,
|
503 |
+
"loss": 0.0701,
|
504 |
+
"step": 6200
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 0.05243271135376267,
|
508 |
+
"grad_norm": 0.03564453125,
|
509 |
+
"learning_rate": 0.0013223643331611537,
|
510 |
+
"loss": 0.0708,
|
511 |
+
"step": 6300
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 0.053264976613346206,
|
515 |
+
"grad_norm": 0.04443359375,
|
516 |
+
"learning_rate": 0.001300084635000341,
|
517 |
+
"loss": 0.0707,
|
518 |
+
"step": 6400
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.05409724187292974,
|
522 |
+
"grad_norm": 0.033935546875,
|
523 |
+
"learning_rate": 0.0012776400013875004,
|
524 |
+
"loss": 0.0704,
|
525 |
+
"step": 6500
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.054929507132513274,
|
529 |
+
"grad_norm": 0.046142578125,
|
530 |
+
"learning_rate": 0.0012550427685616766,
|
531 |
+
"loss": 0.0707,
|
532 |
+
"step": 6600
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"epoch": 0.05576177239209681,
|
536 |
+
"grad_norm": 0.04150390625,
|
537 |
+
"learning_rate": 0.0012323053566349834,
|
538 |
+
"loss": 0.0696,
|
539 |
+
"step": 6700
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.05659403765168034,
|
543 |
+
"grad_norm": 0.042236328125,
|
544 |
+
"learning_rate": 0.0012094402627661448,
|
545 |
+
"loss": 0.0705,
|
546 |
+
"step": 6800
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"epoch": 0.057426302911263875,
|
550 |
+
"grad_norm": 0.035888671875,
|
551 |
+
"learning_rate": 0.0011864600542916813,
|
552 |
+
"loss": 0.0686,
|
553 |
+
"step": 6900
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 0.05825856817084741,
|
557 |
+
"grad_norm": 0.0498046875,
|
558 |
+
"learning_rate": 0.0011633773618185302,
|
559 |
+
"loss": 0.0687,
|
560 |
+
"step": 7000
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.05825856817084741,
|
564 |
+
"eval_peoplespeech-clean-transcription_loss": 1.518404483795166,
|
565 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
566 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.4703,
|
567 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.758,
|
568 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.845,
|
569 |
+
"step": 7000
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.05909083343043095,
|
573 |
+
"grad_norm": 0.034423828125,
|
574 |
+
"learning_rate": 0.0011402048722818862,
|
575 |
+
"loss": 0.0693,
|
576 |
+
"step": 7100
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.059923098690014484,
|
580 |
+
"grad_norm": 0.047119140625,
|
581 |
+
"learning_rate": 0.0011169553219720827,
|
582 |
+
"loss": 0.0697,
|
583 |
+
"step": 7200
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.06075536394959802,
|
587 |
+
"grad_norm": 0.0576171875,
|
588 |
+
"learning_rate": 0.001093641489534351,
|
589 |
+
"loss": 0.0685,
|
590 |
+
"step": 7300
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.06158762920918155,
|
594 |
+
"grad_norm": 0.052490234375,
|
595 |
+
"learning_rate": 0.001070276188945293,
|
596 |
+
"loss": 0.0666,
|
597 |
+
"step": 7400
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.062419894468765086,
|
601 |
+
"grad_norm": 0.043212890625,
|
602 |
+
"learning_rate": 0.00104687226246994,
|
603 |
+
"loss": 0.0692,
|
604 |
+
"step": 7500
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.06325215972834862,
|
608 |
+
"grad_norm": 0.04052734375,
|
609 |
+
"learning_rate": 0.0010234425736032607,
|
610 |
+
"loss": 0.069,
|
611 |
+
"step": 7600
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.06408442498793215,
|
615 |
+
"grad_norm": 0.06298828125,
|
616 |
+
"learning_rate": 0.001,
|
617 |
+
"loss": 0.0682,
|
618 |
+
"step": 7700
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.06491669024751569,
|
622 |
+
"grad_norm": 0.04736328125,
|
623 |
+
"learning_rate": 0.0009765574263967396,
|
624 |
+
"loss": 0.0676,
|
625 |
+
"step": 7800
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.06574895550709922,
|
629 |
+
"grad_norm": 0.064453125,
|
630 |
+
"learning_rate": 0.0009531277375300599,
|
631 |
+
"loss": 0.0685,
|
632 |
+
"step": 7900
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.06658122076668276,
|
636 |
+
"grad_norm": 0.037109375,
|
637 |
+
"learning_rate": 0.0009297238110547074,
|
638 |
+
"loss": 0.0677,
|
639 |
+
"step": 8000
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.06658122076668276,
|
643 |
+
"eval_peoplespeech-clean-transcription_loss": 1.5178765058517456,
|
644 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
645 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.3361,
|
646 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.855,
|
647 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.857,
|
648 |
+
"step": 8000
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.06741348602626629,
|
652 |
+
"grad_norm": 0.041259765625,
|
653 |
+
"learning_rate": 0.0009063585104656494,
|
654 |
+
"loss": 0.068,
|
655 |
+
"step": 8100
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.06824575128584982,
|
659 |
+
"grad_norm": 0.0390625,
|
660 |
+
"learning_rate": 0.0008830446780279176,
|
661 |
+
"loss": 0.0681,
|
662 |
+
"step": 8200
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.06907801654543336,
|
666 |
+
"grad_norm": 0.043212890625,
|
667 |
+
"learning_rate": 0.0008597951277181142,
|
668 |
+
"loss": 0.0677,
|
669 |
+
"step": 8300
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.06991028180501689,
|
673 |
+
"grad_norm": 0.054443359375,
|
674 |
+
"learning_rate": 0.0008366226381814697,
|
675 |
+
"loss": 0.0679,
|
676 |
+
"step": 8400
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.07074254706460043,
|
680 |
+
"grad_norm": 0.036865234375,
|
681 |
+
"learning_rate": 0.000813539945708319,
|
682 |
+
"loss": 0.0685,
|
683 |
+
"step": 8500
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 0.07157481232418396,
|
687 |
+
"grad_norm": 0.036865234375,
|
688 |
+
"learning_rate": 0.0007905597372338558,
|
689 |
+
"loss": 0.0678,
|
690 |
+
"step": 8600
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 0.07240707758376749,
|
694 |
+
"grad_norm": 0.03466796875,
|
695 |
+
"learning_rate": 0.0007676946433650169,
|
696 |
+
"loss": 0.0671,
|
697 |
+
"step": 8700
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.07323934284335103,
|
701 |
+
"grad_norm": 0.03857421875,
|
702 |
+
"learning_rate": 0.0007449572314383236,
|
703 |
+
"loss": 0.0659,
|
704 |
+
"step": 8800
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.07407160810293456,
|
708 |
+
"grad_norm": 0.04248046875,
|
709 |
+
"learning_rate": 0.0007223599986124993,
|
710 |
+
"loss": 0.0657,
|
711 |
+
"step": 8900
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.07490387336251811,
|
715 |
+
"grad_norm": 0.0517578125,
|
716 |
+
"learning_rate": 0.0006999153649996595,
|
717 |
+
"loss": 0.0662,
|
718 |
+
"step": 9000
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 0.07490387336251811,
|
722 |
+
"eval_peoplespeech-clean-transcription_loss": 1.49990975856781,
|
723 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
724 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.6057,
|
725 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.663,
|
726 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.833,
|
727 |
+
"step": 9000
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 0.07573613862210164,
|
731 |
+
"grad_norm": 0.05419921875,
|
732 |
+
"learning_rate": 0.0006776356668388464,
|
733 |
+
"loss": 0.0659,
|
734 |
+
"step": 9100
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.07656840388168518,
|
738 |
+
"grad_norm": 0.041015625,
|
739 |
+
"learning_rate": 0.0006555331497156671,
|
740 |
+
"loss": 0.0656,
|
741 |
+
"step": 9200
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.07740066914126871,
|
745 |
+
"grad_norm": 0.08203125,
|
746 |
+
"learning_rate": 0.0006336199618317538,
|
747 |
+
"loss": 0.0663,
|
748 |
+
"step": 9300
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 0.07823293440085224,
|
752 |
+
"grad_norm": 0.03271484375,
|
753 |
+
"learning_rate": 0.0006119081473277501,
|
754 |
+
"loss": 0.0663,
|
755 |
+
"step": 9400
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 0.07906519966043578,
|
759 |
+
"grad_norm": 0.043212890625,
|
760 |
+
"learning_rate": 0.0005904096396634935,
|
761 |
+
"loss": 0.0642,
|
762 |
+
"step": 9500
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"epoch": 0.07989746492001931,
|
766 |
+
"grad_norm": 0.03271484375,
|
767 |
+
"learning_rate": 0.0005691362550590297,
|
768 |
+
"loss": 0.0644,
|
769 |
+
"step": 9600
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.08072973017960285,
|
773 |
+
"grad_norm": 0.047607421875,
|
774 |
+
"learning_rate": 0.0005480996860000663,
|
775 |
+
"loss": 0.0648,
|
776 |
+
"step": 9700
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.08156199543918638,
|
780 |
+
"grad_norm": 0.03955078125,
|
781 |
+
"learning_rate": 0.0005273114948114346,
|
782 |
+
"loss": 0.0655,
|
783 |
+
"step": 9800
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.08239426069876991,
|
787 |
+
"grad_norm": 0.048095703125,
|
788 |
+
"learning_rate": 0.0005067831073020928,
|
789 |
+
"loss": 0.0651,
|
790 |
+
"step": 9900
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 0.08322652595835345,
|
794 |
+
"grad_norm": 0.0299072265625,
|
795 |
+
"learning_rate": 0.00048652580648515787,
|
796 |
+
"loss": 0.066,
|
797 |
+
"step": 10000
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.08322652595835345,
|
801 |
+
"eval_peoplespeech-clean-transcription_loss": 1.489192247390747,
|
802 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
803 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.4911,
|
804 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.743,
|
805 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.843,
|
806 |
+
"step": 10000
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.08405879121793698,
|
810 |
+
"grad_norm": 0.055908203125,
|
811 |
+
"learning_rate": 0.0004665507263764299,
|
812 |
+
"loss": 0.0653,
|
813 |
+
"step": 10100
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.08489105647752052,
|
817 |
+
"grad_norm": 0.039794921875,
|
818 |
+
"learning_rate": 0.0004468688458748006,
|
819 |
+
"loss": 0.065,
|
820 |
+
"step": 10200
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"epoch": 0.08572332173710405,
|
824 |
+
"grad_norm": 0.05322265625,
|
825 |
+
"learning_rate": 0.0004274909827279283,
|
826 |
+
"loss": 0.0654,
|
827 |
+
"step": 10300
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 0.08655558699668758,
|
831 |
+
"grad_norm": 0.0419921875,
|
832 |
+
"learning_rate": 0.0004084277875864776,
|
833 |
+
"loss": 0.0648,
|
834 |
+
"step": 10400
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 0.08738785225627112,
|
838 |
+
"grad_norm": 0.050537109375,
|
839 |
+
"learning_rate": 0.00038968973815020803,
|
840 |
+
"loss": 0.0643,
|
841 |
+
"step": 10500
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 0.08822011751585465,
|
845 |
+
"grad_norm": 0.0458984375,
|
846 |
+
"learning_rate": 0.00037128713340911534,
|
847 |
+
"loss": 0.0669,
|
848 |
+
"step": 10600
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 0.08905238277543819,
|
852 |
+
"grad_norm": 0.05029296875,
|
853 |
+
"learning_rate": 0.00035323008798280133,
|
854 |
+
"loss": 0.0657,
|
855 |
+
"step": 10700
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.08988464803502172,
|
859 |
+
"grad_norm": 0.039794921875,
|
860 |
+
"learning_rate": 0.00033552852656117837,
|
861 |
+
"loss": 0.0646,
|
862 |
+
"step": 10800
|
863 |
+
}
|
864 |
+
],
|
865 |
+
"logging_steps": 100,
|
866 |
+
"max_steps": 14400,
|
867 |
+
"num_input_tokens_seen": 0,
|
868 |
+
"num_train_epochs": 1,
|
869 |
+
"save_steps": 3600,
|
870 |
+
"stateful_callbacks": {
|
871 |
+
"TrainerControl": {
|
872 |
+
"args": {
|
873 |
+
"should_epoch_stop": false,
|
874 |
+
"should_evaluate": false,
|
875 |
+
"should_log": false,
|
876 |
+
"should_save": true,
|
877 |
+
"should_training_stop": false
|
878 |
+
},
|
879 |
+
"attributes": {}
|
880 |
+
}
|
881 |
+
},
|
882 |
+
"total_flos": 6.93903470695465e+17,
|
883 |
+
"train_batch_size": 24,
|
884 |
+
"trial_name": null,
|
885 |
+
"trial_params": null
|
886 |
+
}
|
checkpoint-10800/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37b86db64b66888697120b24a102f1ab62ab1d7da7b6bd4cd2e497d4499c3fb5
|
3 |
+
size 5688
|
checkpoint-10800/ultravox_config.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from enum import Enum
|
3 |
+
from typing import Any, Dict, List, Optional
|
4 |
+
|
5 |
+
import transformers
|
6 |
+
|
7 |
+
|
8 |
+
@dataclasses.dataclass
|
9 |
+
class LoraConfigSimplified:
|
10 |
+
"""
|
11 |
+
Low Rank Approximation (LoRA) configuration.
|
12 |
+
|
13 |
+
Used for language and audio models separately.
|
14 |
+
"""
|
15 |
+
|
16 |
+
# The rank of the approximation
|
17 |
+
r: int = 0
|
18 |
+
lora_alpha: float = 8
|
19 |
+
target_modules: Optional[List[str]] = dataclasses.field(
|
20 |
+
default_factory=lambda: ["k_proj", "q_proj", "linear_k", "linear_q"]
|
21 |
+
)
|
22 |
+
# A list of module names regex patterns to unfreeze. Only used if r == 0.
|
23 |
+
unfreeze_layers: Optional[List[str]] = None
|
24 |
+
|
25 |
+
|
26 |
+
class LossFunction(str, Enum):
|
27 |
+
CrossEntropy = "ce"
|
28 |
+
KL_Divergence = "kl"
|
29 |
+
|
30 |
+
|
31 |
+
@dataclasses.dataclass
|
32 |
+
class LossConfig:
|
33 |
+
loss_function: LossFunction = LossFunction.CrossEntropy
|
34 |
+
kl_temperature: float = 2.0
|
35 |
+
|
36 |
+
@property
|
37 |
+
def requires_alt_fields(self):
|
38 |
+
return self.loss_function == LossFunction.KL_Divergence
|
39 |
+
|
40 |
+
|
41 |
+
class UltravoxConfig(transformers.PretrainedConfig):
|
42 |
+
r"""
|
43 |
+
This is the configuration class to store the configuration of a [`UltravoxForConditionalGeneration`]. It is used to instantiate an
|
44 |
+
Ultravox model according to the specified arguments, defining the model architecture.
|
45 |
+
|
46 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
47 |
+
documentation from [`PretrainedConfig`] for more information.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
audio_config (`Wav2Vec2Config`, *optional*):
|
51 |
+
Custom audio config or dict
|
52 |
+
text_config (`Union[AutoConfig, dict]`, *optional*):
|
53 |
+
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
|
54 |
+
ignore_index (`int`, *optional*, defaults to -100):
|
55 |
+
The ignore index for the loss function.
|
56 |
+
audio_token_index (`int`, *optional*, defaults to 32000):
|
57 |
+
The audio token index to encode the audio prompt.
|
58 |
+
stack_factor (`int`, *optional*, defaults to 8):
|
59 |
+
Audio downsampling factor for the multimodal projector.
|
60 |
+
norm_init (`float`, *optional*, defaults to 0.4):
|
61 |
+
The initialization value for the layer normalization.
|
62 |
+
projector_act (`str`, *optional*, defaults to `"swiglu"`):
|
63 |
+
The activation function used by the multimodal projector.
|
64 |
+
text_model_lora_config (`LoraConfigSimplified`, *optional*):
|
65 |
+
The LoRA configuration for finetuning the text model.
|
66 |
+
audio_model_lora_config (`LoraConfigSimplified`, *optional*):
|
67 |
+
The LoRA configuration for finetuning the audio model.
|
68 |
+
audio_latency_block_size (`int`, *optional*, defaults to `None`):
|
69 |
+
The latency block size for simulating audio streaming.
|
70 |
+
|
71 |
+
|
72 |
+
Example:
|
73 |
+
|
74 |
+
```python
|
75 |
+
>>> from transformers import UltravoxModel, Wav2Vec2Config, UltravoxConfig, LlamaConfig
|
76 |
+
|
77 |
+
>>> # Initializing an audio encoder config
|
78 |
+
>>> audio_config = Wav2Vec2Config()
|
79 |
+
|
80 |
+
>>> # Initializing a Llama config
|
81 |
+
>>> text_config = LlamaConfig()
|
82 |
+
|
83 |
+
>>> # Initializing a default configuration
|
84 |
+
>>> configuration = UltravoxConfig(audio_config, text_config)
|
85 |
+
|
86 |
+
>>> # Initializing a completely untrained model from the configuration
|
87 |
+
>>> model = UltravoxModel(configuration)
|
88 |
+
|
89 |
+
>>> # Accessing the model configuration
|
90 |
+
>>> configuration = model.config
|
91 |
+
|
92 |
+
>>> # Initialize a model from pretrained checkpoints and random projector weights
|
93 |
+
>>> config = UltravoxConfig(audio_model_id="facebook/wav2vec2-base-960h", text_model_id="meta-llama/Llama-2-7b-chat-hf")
|
94 |
+
```"""
|
95 |
+
|
96 |
+
model_type = "ultravox"
|
97 |
+
is_composition = False
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
audio_config: Optional[Dict[str, Any]] = None,
|
102 |
+
text_config: Optional[Dict[str, Any]] = None,
|
103 |
+
audio_model_id: Optional[str] = None,
|
104 |
+
text_model_id: Optional[str] = None,
|
105 |
+
ignore_index: int = -100,
|
106 |
+
hidden_size: int = 4096,
|
107 |
+
stack_factor: int = 8,
|
108 |
+
norm_init: float = 0.4,
|
109 |
+
projector_act: str = "swiglu",
|
110 |
+
projector_ln_mid: bool = False, # defaults to False for compatibility with v0.4.1 and below
|
111 |
+
text_model_lora_config: Optional[LoraConfigSimplified] = None,
|
112 |
+
audio_model_lora_config: Optional[LoraConfigSimplified] = None,
|
113 |
+
audio_latency_block_size: Optional[int] = None,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
self.ignore_index = ignore_index
|
117 |
+
|
118 |
+
self.audio_model_id = audio_model_id
|
119 |
+
self.text_model_id = text_model_id
|
120 |
+
|
121 |
+
self.hidden_size = hidden_size
|
122 |
+
self.stack_factor = stack_factor
|
123 |
+
self.norm_init = norm_init
|
124 |
+
self.projector_act = projector_act
|
125 |
+
self.projector_ln_mid = projector_ln_mid
|
126 |
+
if text_model_id is not None:
|
127 |
+
self.text_config: transformers.LlamaConfig = (
|
128 |
+
transformers.AutoConfig.from_pretrained(text_model_id)
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
text_config = text_config or {}
|
132 |
+
self.text_config = transformers.CONFIG_MAPPING[
|
133 |
+
text_config.get("model_type", "llama")
|
134 |
+
](**text_config)
|
135 |
+
|
136 |
+
if audio_model_id is not None:
|
137 |
+
self.audio_config: transformers.PretrainedConfig = (
|
138 |
+
transformers.AutoConfig.from_pretrained(audio_model_id)
|
139 |
+
)
|
140 |
+
else:
|
141 |
+
audio_config = audio_config or {}
|
142 |
+
self.audio_config = transformers.CONFIG_MAPPING[
|
143 |
+
audio_config.get("model_type", "wav2vec2")
|
144 |
+
](**audio_config)
|
145 |
+
|
146 |
+
self.text_model_lora_config = (
|
147 |
+
text_model_lora_config
|
148 |
+
if isinstance(text_model_lora_config, dict)
|
149 |
+
else dataclasses.asdict(text_model_lora_config or LoraConfigSimplified())
|
150 |
+
)
|
151 |
+
self.audio_model_lora_config = (
|
152 |
+
audio_model_lora_config
|
153 |
+
if isinstance(audio_model_lora_config, dict)
|
154 |
+
else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
|
155 |
+
)
|
156 |
+
self.audio_latency_block_size = audio_latency_block_size
|
157 |
+
|
158 |
+
self.vocab_size = self.text_config.vocab_size
|
159 |
+
|
160 |
+
self.initializer_range = self.text_config.initializer_range
|
161 |
+
|
162 |
+
super().__init__(**kwargs)
|
163 |
+
|
164 |
+
def to_diff_dict(self) -> Dict[str, Any]:
|
165 |
+
diff_dict = super().to_diff_dict()
|
166 |
+
|
167 |
+
# remove text_config and audio_config if text_model_id and audio_model_id are present
|
168 |
+
if self.text_model_id is not None:
|
169 |
+
diff_dict.pop("text_config", None)
|
170 |
+
if self.audio_model_id is not None:
|
171 |
+
diff_dict.pop("audio_config", None)
|
172 |
+
|
173 |
+
return diff_dict
|
checkpoint-10800/ultravox_model.py
ADDED
@@ -0,0 +1,754 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import re
|
3 |
+
from typing import Any, Dict, Optional, Set, Tuple, Union
|
4 |
+
|
5 |
+
import peft
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import transformers
|
10 |
+
import transformers.activations
|
11 |
+
import transformers.modeling_outputs
|
12 |
+
import transformers.models
|
13 |
+
from transformers.models.whisper import modeling_whisper as whisper
|
14 |
+
|
15 |
+
# We must use relative import in this directory to allow uploading to HF Hub
|
16 |
+
# Even "from . import X" pattern doesn't work (undocumented and unclear why)
|
17 |
+
from .ultravox_config import LossConfig
|
18 |
+
from .ultravox_config import LossFunction
|
19 |
+
from .ultravox_config import UltravoxConfig
|
20 |
+
|
21 |
+
|
22 |
+
class UltravoxModel(transformers.LlamaPreTrainedModel):
|
23 |
+
"""
|
24 |
+
The Ultravox model which consists of an audio encoder and a language model.
|
25 |
+
|
26 |
+
Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
|
27 |
+
projected to the language model's embedding space using a few linear layers.
|
28 |
+
The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
|
29 |
+
|
30 |
+
A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
|
31 |
+
|
32 |
+
Parameters:
|
33 |
+
config: Model configuration class with all the parameters of the model.
|
34 |
+
"""
|
35 |
+
|
36 |
+
config_class = UltravoxConfig
|
37 |
+
config: UltravoxConfig # for type hinting
|
38 |
+
# Usually we load encoder and LLM weights from a pretrained model separately, so they are allowed to be missing
|
39 |
+
_keys_to_ignore_on_load_missing = ["audio_tower.*", "language_model.*"]
|
40 |
+
# Since we have kwargs in forward, we need to set this to False, otherwise grad_accum_steps will cause incorrect train loss to be reported
|
41 |
+
# see https://github.com/huggingface/transformers/issues/35856 and https://github.com/huggingface/trl/pull/2615/files
|
42 |
+
accepts_loss_kwargs = False
|
43 |
+
|
44 |
+
def __init__(self, config: UltravoxConfig):
|
45 |
+
super().__init__(config)
|
46 |
+
self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook)
|
47 |
+
|
48 |
+
self.keep_params: Set[str] = set()
|
49 |
+
self.vocab_size = config.vocab_size
|
50 |
+
|
51 |
+
self.audio_tower = self._create_audio_tower(config)
|
52 |
+
self.multi_modal_projector = self._create_multi_modal_projector(config)
|
53 |
+
self.language_model = self._create_language_model(config)
|
54 |
+
|
55 |
+
# Determine no_split_modules dynamically to use with FSDP auto_wrap policy.
|
56 |
+
# FSDP throws an error if some of the layer types are not found in the model.
|
57 |
+
# This would be something like ["LlamaDecoderLayer", "WhisperEncoderLayer"]
|
58 |
+
self._no_split_modules = (self.language_model._no_split_modules or []) + (
|
59 |
+
self.audio_tower._no_split_modules or []
|
60 |
+
)
|
61 |
+
|
62 |
+
self.loss_config = LossConfig()
|
63 |
+
self.post_init()
|
64 |
+
|
65 |
+
def get_input_embeddings(self):
|
66 |
+
return self.language_model.get_input_embeddings()
|
67 |
+
|
68 |
+
def set_input_embeddings(self, value):
|
69 |
+
self.language_model.set_input_embeddings(value)
|
70 |
+
|
71 |
+
def get_output_embeddings(self):
|
72 |
+
return self.language_model.get_output_embeddings()
|
73 |
+
|
74 |
+
def set_output_embeddings(self, new_embeddings):
|
75 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
76 |
+
|
77 |
+
def set_decoder(self, decoder):
|
78 |
+
self.language_model.set_decoder(decoder)
|
79 |
+
|
80 |
+
def get_decoder(self):
|
81 |
+
return self.language_model.get_decoder()
|
82 |
+
|
83 |
+
def tie_weights(self):
|
84 |
+
return self.language_model.tie_weights()
|
85 |
+
|
86 |
+
def set_loss_config(self, loss_config: LossConfig):
|
87 |
+
self.loss_config = loss_config
|
88 |
+
|
89 |
+
def _setup_cache(
|
90 |
+
self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
|
91 |
+
):
|
92 |
+
self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
|
93 |
+
|
94 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
95 |
+
return self.language_model._reorder_cache(past_key_values, beam_idx)
|
96 |
+
|
97 |
+
def resize_token_embeddings(
|
98 |
+
self,
|
99 |
+
new_num_tokens: Optional[int] = None,
|
100 |
+
pad_to_multiple_of: Optional[int] = None,
|
101 |
+
) -> nn.Embedding:
|
102 |
+
model_embeds = self.language_model.resize_token_embeddings(
|
103 |
+
new_num_tokens, pad_to_multiple_of
|
104 |
+
)
|
105 |
+
# update vocab size
|
106 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
107 |
+
self.config.vocab_size = model_embeds.num_embeddings
|
108 |
+
self.vocab_size = model_embeds.num_embeddings
|
109 |
+
return model_embeds
|
110 |
+
|
111 |
+
def _compute_kl_loss(
|
112 |
+
self,
|
113 |
+
lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
|
114 |
+
labels: Optional[torch.Tensor] = None,
|
115 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
116 |
+
alt_input_ids: Optional[torch.Tensor] = None,
|
117 |
+
alt_attention_mask: Optional[torch.Tensor] = None,
|
118 |
+
alt_labels: Optional[torch.Tensor] = None,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
# disable gradient computation for the teacher model
|
122 |
+
with torch.no_grad():
|
123 |
+
# compute the teacher (text-only) model's distribution
|
124 |
+
alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
|
125 |
+
alt_lm_output = self.language_model.forward(
|
126 |
+
inputs_embeds=alt_inputs_embeds,
|
127 |
+
labels=alt_labels,
|
128 |
+
attention_mask=alt_attention_mask,
|
129 |
+
past_key_values=past_key_values,
|
130 |
+
**kwargs,
|
131 |
+
)
|
132 |
+
# compute the KL divergence loss between the two models
|
133 |
+
kl_loss = F.kl_div(
|
134 |
+
F.log_softmax(
|
135 |
+
lm_output.logits[labels != -100] / self.loss_config.kl_temperature,
|
136 |
+
dim=-1,
|
137 |
+
),
|
138 |
+
F.softmax(
|
139 |
+
alt_lm_output.logits[alt_labels != -100]
|
140 |
+
/ self.loss_config.kl_temperature,
|
141 |
+
dim=-1,
|
142 |
+
),
|
143 |
+
reduction="batchmean",
|
144 |
+
)
|
145 |
+
return {"loss": kl_loss}
|
146 |
+
|
147 |
+
def forward(
|
148 |
+
self,
|
149 |
+
input_ids: torch.Tensor,
|
150 |
+
audio_values: Optional[torch.FloatTensor] = None,
|
151 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
152 |
+
labels: Optional[torch.Tensor] = None,
|
153 |
+
attention_mask: Optional[torch.Tensor] = None,
|
154 |
+
audio_token_start_idx: Optional[torch.Tensor] = None,
|
155 |
+
audio_len: Optional[torch.Tensor] = None,
|
156 |
+
audio_token_len: Optional[torch.Tensor] = None,
|
157 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
158 |
+
# the alt_* fields are needed for KL divergence loss
|
159 |
+
alt_input_ids: Optional[torch.Tensor] = None,
|
160 |
+
alt_attention_mask: Optional[torch.Tensor] = None,
|
161 |
+
alt_labels: Optional[torch.Tensor] = None,
|
162 |
+
**kwargs,
|
163 |
+
) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
|
164 |
+
"""
|
165 |
+
Forward pass for the Ultravox model.
|
166 |
+
|
167 |
+
`input_ids` are the tokenized text input. They are embedded by the language model as usual.
|
168 |
+
`audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
|
169 |
+
projected to the language model's embedding space using a few linear layers.
|
170 |
+
The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
|
171 |
+
of the audio embeddings in the merged embeddings.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
input_ids: The tokenized text input.
|
175 |
+
audio_values: The processed audio values.
|
176 |
+
inputs_embeds: The embeddings for the input tokens.
|
177 |
+
labels: The tokenized text labels.
|
178 |
+
attention_mask: The attention mask for the input.
|
179 |
+
position_ids: The position ids for the input.
|
180 |
+
past_key_values: The past key value cache for the language model attention layers.
|
181 |
+
**kwargs: Additional keyword arguments. Passed directly to the language model.
|
182 |
+
"""
|
183 |
+
if inputs_embeds is None:
|
184 |
+
# B x T -> B x T x D
|
185 |
+
inputs_embeds = self.get_input_embeddings().forward(input_ids)
|
186 |
+
|
187 |
+
if audio_values is not None:
|
188 |
+
assert (
|
189 |
+
audio_token_start_idx is not None and audio_token_len is not None
|
190 |
+
), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
|
191 |
+
assert (
|
192 |
+
len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
|
193 |
+
), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."
|
194 |
+
|
195 |
+
# B x A/3200 x D
|
196 |
+
audio_tower_output = self.audio_tower.forward(
|
197 |
+
audio_values.to(self.audio_tower.dtype),
|
198 |
+
audio_len=audio_len,
|
199 |
+
).last_hidden_state
|
200 |
+
audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
|
201 |
+
|
202 |
+
audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
|
203 |
+
|
204 |
+
# combine audio and text embeddings
|
205 |
+
for i, (audio, start, length) in enumerate(
|
206 |
+
zip(audio_embeds, audio_token_start_idx, audio_token_len)
|
207 |
+
):
|
208 |
+
length = min(length, audio.shape[0])
|
209 |
+
inputs_embeds[i, start : start + length] = audio[:length]
|
210 |
+
|
211 |
+
lm_output = self.language_model.forward(
|
212 |
+
inputs_embeds=inputs_embeds,
|
213 |
+
labels=labels,
|
214 |
+
attention_mask=attention_mask,
|
215 |
+
past_key_values=past_key_values,
|
216 |
+
**kwargs,
|
217 |
+
)
|
218 |
+
if self.training:
|
219 |
+
if self.loss_config.loss_function == LossFunction.CrossEntropy:
|
220 |
+
return lm_output
|
221 |
+
elif self.loss_config.loss_function == LossFunction.KL_Divergence:
|
222 |
+
return self._compute_kl_loss(
|
223 |
+
lm_output=lm_output,
|
224 |
+
labels=labels,
|
225 |
+
past_key_values=past_key_values,
|
226 |
+
alt_input_ids=alt_input_ids,
|
227 |
+
alt_attention_mask=alt_attention_mask,
|
228 |
+
alt_labels=alt_labels,
|
229 |
+
**kwargs,
|
230 |
+
)
|
231 |
+
else:
|
232 |
+
raise ValueError(
|
233 |
+
f"Unsupported loss function: {self.loss_config.loss_function}"
|
234 |
+
)
|
235 |
+
else:
|
236 |
+
return lm_output
|
237 |
+
|
238 |
+
def prepare_inputs_for_generation(
|
239 |
+
self,
|
240 |
+
input_ids: torch.Tensor,
|
241 |
+
audio_values: Optional[torch.FloatTensor] = None,
|
242 |
+
audio_token_start_idx: Optional[torch.Tensor] = None,
|
243 |
+
audio_token_len: Optional[torch.Tensor] = None,
|
244 |
+
audio_len: Optional[torch.Tensor] = None,
|
245 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
246 |
+
attention_mask: Optional[torch.Tensor] = None,
|
247 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
248 |
+
cache_position: Optional[torch.Tensor] = None,
|
249 |
+
**kwargs,
|
250 |
+
) -> Dict[str, Any]:
|
251 |
+
model_input = self.language_model.prepare_inputs_for_generation(
|
252 |
+
input_ids=input_ids,
|
253 |
+
past_key_values=past_key_values,
|
254 |
+
attention_mask=attention_mask,
|
255 |
+
inputs_embeds=inputs_embeds,
|
256 |
+
cache_position=cache_position,
|
257 |
+
**kwargs,
|
258 |
+
)
|
259 |
+
|
260 |
+
# include audio information in model_input only when it is needed during prefilling
|
261 |
+
# audio_token_start_idx should always be relative to the current cache position
|
262 |
+
prefill_start_idx = 0 if cache_position is None else cache_position[0]
|
263 |
+
if (
|
264 |
+
audio_values is not None
|
265 |
+
and audio_token_start_idx is not None
|
266 |
+
and prefill_start_idx <= torch.max(audio_token_start_idx)
|
267 |
+
):
|
268 |
+
model_input["audio_values"] = audio_values
|
269 |
+
model_input["audio_token_start_idx"] = (
|
270 |
+
audio_token_start_idx - prefill_start_idx
|
271 |
+
)
|
272 |
+
model_input["audio_token_len"] = audio_token_len
|
273 |
+
model_input["audio_len"] = audio_len
|
274 |
+
|
275 |
+
return model_input
|
276 |
+
|
277 |
+
@classmethod
|
278 |
+
def _create_multi_modal_projector(
|
279 |
+
cls, config: UltravoxConfig
|
280 |
+
) -> "UltravoxProjector":
|
281 |
+
projector = UltravoxProjector(config)
|
282 |
+
projector.to(config.torch_dtype)
|
283 |
+
return projector
|
284 |
+
|
285 |
+
@classmethod
|
286 |
+
def _create_audio_tower(
|
287 |
+
cls, config: UltravoxConfig
|
288 |
+
) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
|
289 |
+
if config.audio_model_id is not None:
|
290 |
+
if "whisper" in config.audio_model_id.lower():
|
291 |
+
audio_tower = ModifiedWhisperEncoder.from_pretrained(
|
292 |
+
config.audio_model_id, torch_dtype=config.torch_dtype
|
293 |
+
)
|
294 |
+
audio_tower.init_latency_mask(
|
295 |
+
config.audio_latency_block_size, dtype=config.torch_dtype
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
assert config.audio_latency_block_size in (
|
299 |
+
None,
|
300 |
+
0,
|
301 |
+
), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
|
302 |
+
audio_tower = transformers.AutoModel.from_pretrained(
|
303 |
+
config.audio_model_id, torch_dtype=config.torch_dtype
|
304 |
+
)
|
305 |
+
else:
|
306 |
+
if "whisper" in config.audio_config._name_or_path.lower():
|
307 |
+
audio_tower = ModifiedWhisperEncoder(config.audio_config)
|
308 |
+
audio_tower.init_latency_mask(
|
309 |
+
config.audio_latency_block_size, dtype=config.torch_dtype
|
310 |
+
)
|
311 |
+
else:
|
312 |
+
assert config.audio_latency_block_size in (
|
313 |
+
None,
|
314 |
+
0,
|
315 |
+
), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
|
316 |
+
with transformers.modeling_utils.no_init_weights():
|
317 |
+
# we only ever use from_config if the weights are retrained, hence initializing is not
|
318 |
+
# required. This makes the model quite creation faster since init on CPU is quite slow.
|
319 |
+
audio_tower = transformers.AutoModel.from_config(
|
320 |
+
config.audio_config
|
321 |
+
)
|
322 |
+
|
323 |
+
if isinstance(
|
324 |
+
audio_tower,
|
325 |
+
(transformers.Wav2Vec2BertModel, transformers.WhisperModel),
|
326 |
+
):
|
327 |
+
# For these models we only need the encoder part
|
328 |
+
# Wav2Vec2BertModel -> Wav2Vec2BertEncoder
|
329 |
+
# WhisperModel -> WhisperEncoder
|
330 |
+
audio_tower = audio_tower.encoder
|
331 |
+
|
332 |
+
audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
|
333 |
+
return audio_tower
|
334 |
+
|
335 |
+
@classmethod
|
336 |
+
def _create_language_model(
|
337 |
+
cls, config: UltravoxConfig
|
338 |
+
) -> transformers.LlamaForCausalLM:
|
339 |
+
if config.text_model_id is not None:
|
340 |
+
language_model = transformers.AutoModelForCausalLM.from_pretrained(
|
341 |
+
config.text_model_id,
|
342 |
+
attn_implementation=config._attn_implementation,
|
343 |
+
torch_dtype=config.torch_dtype,
|
344 |
+
)
|
345 |
+
else:
|
346 |
+
with transformers.modeling_utils.no_init_weights():
|
347 |
+
# we only ever use from_config if the weights are retrained, hence initializing is not
|
348 |
+
# required. This makes the model quite creation faster since init on CPU is quite slow.
|
349 |
+
language_model = transformers.AutoModelForCausalLM.from_config(
|
350 |
+
config.text_config,
|
351 |
+
attn_implementation=config._attn_implementation,
|
352 |
+
torch_dtype=config.torch_dtype,
|
353 |
+
)
|
354 |
+
|
355 |
+
language_model = apply_lora(language_model, config.text_model_lora_config)
|
356 |
+
return language_model
|
357 |
+
|
358 |
+
def merge_and_unload(self):
|
359 |
+
if isinstance(self.language_model, peft.PeftModel):
|
360 |
+
self.language_model = self.language_model.merge_and_unload()
|
361 |
+
# no need to download base language model weights anymore, so we can remove the id
|
362 |
+
self.config.text_model_id = None
|
363 |
+
self.keep_params.update(
|
364 |
+
set(
|
365 |
+
[
|
366 |
+
f"language_model.{name}"
|
367 |
+
for name, _ in self.language_model.named_parameters()
|
368 |
+
]
|
369 |
+
)
|
370 |
+
)
|
371 |
+
|
372 |
+
if isinstance(self.audio_tower, peft.PeftModel):
|
373 |
+
self.audio_tower = self.audio_tower.merge_and_unload()
|
374 |
+
# no need to download base audio model weights anymore, so we can remove the id
|
375 |
+
self.config.audio_model_id = None
|
376 |
+
self.keep_params.update(
|
377 |
+
set(
|
378 |
+
[
|
379 |
+
f"audio_tower.{name}"
|
380 |
+
for name, _ in self.audio_tower.named_parameters()
|
381 |
+
]
|
382 |
+
)
|
383 |
+
)
|
384 |
+
|
385 |
+
for param in ["text_model_lora_config", "audio_model_lora_config"]:
|
386 |
+
if hasattr(self.config, param):
|
387 |
+
delattr(self.config, param)
|
388 |
+
|
389 |
+
def push_to_hub(self, *args, **kwargs):
|
390 |
+
self.merge_and_unload()
|
391 |
+
return super().push_to_hub(*args, **kwargs)
|
392 |
+
|
393 |
+
def diff_state_dict(
|
394 |
+
self, state_dict: Optional[Dict[str, Any]] = None
|
395 |
+
) -> Dict[str, Any]:
|
396 |
+
if state_dict is None:
|
397 |
+
state_dict = super().state_dict()
|
398 |
+
|
399 |
+
named_params = dict(self.named_parameters())
|
400 |
+
|
401 |
+
state_dict = {
|
402 |
+
k: v
|
403 |
+
for k, v in state_dict.items()
|
404 |
+
if k in self.keep_params
|
405 |
+
or (k in named_params and named_params[k].requires_grad)
|
406 |
+
}
|
407 |
+
|
408 |
+
return state_dict
|
409 |
+
|
410 |
+
def save_pretrained(
|
411 |
+
self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs
|
412 |
+
):
|
413 |
+
state_dict = self.diff_state_dict(state_dict)
|
414 |
+
|
415 |
+
super().save_pretrained(*args, state_dict=state_dict, **kwargs)
|
416 |
+
|
417 |
+
def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs):
|
418 |
+
self.keep_params.update(set(state_dict.keys()))
|
419 |
+
|
420 |
+
def print_trainable_parameters(self):
|
421 |
+
"""
|
422 |
+
Prints the number of trainable parameters in the model (reuses Peft model's method)
|
423 |
+
"""
|
424 |
+
count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
|
425 |
+
|
426 |
+
trainable_params, all_param = count_params(self)
|
427 |
+
|
428 |
+
logging.info(
|
429 |
+
f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
|
430 |
+
f" || trainable%: {100 * trainable_params / all_param:.1f}%"
|
431 |
+
)
|
432 |
+
|
433 |
+
lm_trainable_params, lm_all_params = count_params(self.language_model)
|
434 |
+
audio_trainable_params, audio_all_params = count_params(self.audio_tower)
|
435 |
+
|
436 |
+
projector_trainable_params = (
|
437 |
+
trainable_params - lm_trainable_params - audio_trainable_params
|
438 |
+
)
|
439 |
+
projector_all_params = all_param - lm_all_params - audio_all_params
|
440 |
+
|
441 |
+
logging.info(
|
442 |
+
f"Trainable%: "
|
443 |
+
f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
|
444 |
+
f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
|
445 |
+
f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
|
446 |
+
)
|
447 |
+
|
448 |
+
|
449 |
+
# TODO: refactor common parts to a shared module
|
450 |
+
def is_cache_empty(
|
451 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]]
|
452 |
+
) -> bool:
|
453 |
+
"""
|
454 |
+
Check if the cache is empty.
|
455 |
+
"""
|
456 |
+
if past_key_values is None:
|
457 |
+
return True
|
458 |
+
if isinstance(past_key_values, tuple):
|
459 |
+
return all(len(c) == 0 for c in past_key_values)
|
460 |
+
return past_key_values.get_seq_length() == 0
|
461 |
+
|
462 |
+
|
463 |
+
def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
|
464 |
+
"""
|
465 |
+
Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
|
466 |
+
"""
|
467 |
+
unfreeze_layers = lora_config.pop("unfreeze_layers", None)
|
468 |
+
lora_config = peft.LoraConfig(**lora_config or {})
|
469 |
+
|
470 |
+
if lora_config.r == 0:
|
471 |
+
# freeze the model entirely, except for the specified layers
|
472 |
+
for name, param in model.named_parameters():
|
473 |
+
if not unfreeze_layers or not any(
|
474 |
+
re.match(layer, name) for layer in unfreeze_layers
|
475 |
+
):
|
476 |
+
param.requires_grad = False
|
477 |
+
else:
|
478 |
+
logging.info(f"Unfreezing layer: {name} with #{param.numel()} params")
|
479 |
+
else:
|
480 |
+
model = peft.get_peft_model(model, lora_config)
|
481 |
+
|
482 |
+
return model
|
483 |
+
|
484 |
+
|
485 |
+
class StackAudioFrames(nn.Module):
|
486 |
+
"""
|
487 |
+
Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.
|
488 |
+
|
489 |
+
The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
|
490 |
+
NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
|
491 |
+
we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
|
492 |
+
In most cases this extra padding will get removed in the model's forward function so it has no effect.
|
493 |
+
"""
|
494 |
+
|
495 |
+
def __init__(self, stack_factor: int = 8):
|
496 |
+
super().__init__()
|
497 |
+
self.stack_factor = stack_factor
|
498 |
+
|
499 |
+
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
|
500 |
+
B, T, C = audio_embeds.shape
|
501 |
+
T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
|
502 |
+
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
|
503 |
+
B, T, C = audio_embeds.shape
|
504 |
+
audio_embeds = audio_embeds.view(
|
505 |
+
B, T // self.stack_factor, C * self.stack_factor
|
506 |
+
)
|
507 |
+
return audio_embeds
|
508 |
+
|
509 |
+
|
510 |
+
class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
|
511 |
+
def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
|
512 |
+
super().__init__(hidden_size=hidden_size, eps=eps)
|
513 |
+
self.weight.data.fill_(init)
|
514 |
+
|
515 |
+
|
516 |
+
class SwiGLU(nn.Module):
|
517 |
+
def forward(self, x):
|
518 |
+
x, gate = x.chunk(2, dim=-1)
|
519 |
+
return F.silu(gate) * x
|
520 |
+
|
521 |
+
|
522 |
+
class UltravoxProjector(nn.Module):
|
523 |
+
def __init__(self, config: UltravoxConfig):
|
524 |
+
super().__init__()
|
525 |
+
self.hidden_dim = config.hidden_size
|
526 |
+
self._pad_and_stack = StackAudioFrames(config.stack_factor)
|
527 |
+
dim_in = config.audio_config.hidden_size * config.stack_factor
|
528 |
+
self.ln_pre = RMSNorm(dim_in, init=config.norm_init)
|
529 |
+
self.linear_1 = nn.Linear(dim_in, self.hidden_dim, bias=False)
|
530 |
+
dim_mid = self.hidden_dim
|
531 |
+
self.act = transformers.activations.get_activation(config.projector_act)
|
532 |
+
dim_mid = dim_mid // 2 if config.projector_act == "swiglu" else dim_mid
|
533 |
+
dim_out = config.text_config.hidden_size
|
534 |
+
self.linear_2 = nn.Linear(dim_mid, dim_out, bias=False)
|
535 |
+
|
536 |
+
# Ultravox v0.4.1 and below uses layer_norm after the second linear layer,
|
537 |
+
# while v0.5.0 and above uses layer_norm after the first linear layer.
|
538 |
+
if config.projector_ln_mid:
|
539 |
+
self.ln_mid: nn.Module = RMSNorm(dim_mid, init=config.norm_init)
|
540 |
+
self.ln_post: nn.Module = nn.Identity()
|
541 |
+
else:
|
542 |
+
self.ln_mid = nn.Identity()
|
543 |
+
self.ln_post = RMSNorm(dim_out, init=config.norm_init)
|
544 |
+
|
545 |
+
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
|
546 |
+
audio_features = self._pad_and_stack(audio_features)
|
547 |
+
audio_features = self.ln_pre(audio_features)
|
548 |
+
hidden_states = self.linear_1(audio_features)
|
549 |
+
hidden_states = self.act(hidden_states)
|
550 |
+
hidden_states = self.ln_mid(hidden_states)
|
551 |
+
hidden_states = self.linear_2(hidden_states)
|
552 |
+
hidden_states = self.ln_post(hidden_states)
|
553 |
+
return hidden_states
|
554 |
+
|
555 |
+
|
556 |
+
class ModifiedWhisperEncoder(
|
557 |
+
whisper.WhisperEncoder, transformers.modeling_utils.ModuleUtilsMixin
|
558 |
+
):
|
559 |
+
"""
|
560 |
+
Encoder portion of OpenAI's Whisper model.
|
561 |
+
|
562 |
+
This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
|
563 |
+
1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
|
564 |
+
2. allow less than 30 second of audio padding to be passed in:
|
565 |
+
- relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
|
566 |
+
- embed_pos is now sliced to match the length of `inputs_embeds`
|
567 |
+
|
568 |
+
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
|
569 |
+
"""
|
570 |
+
|
571 |
+
base_model_prefix = "model.encoder"
|
572 |
+
_no_split_modules = ["WhisperEncoderLayer"]
|
573 |
+
|
574 |
+
def __init__(self, config: transformers.WhisperConfig):
|
575 |
+
super().__init__(config)
|
576 |
+
self.config.is_decoder = False
|
577 |
+
|
578 |
+
def init_latency_mask(self, audio_latency_block_size: int, dtype: torch.dtype):
|
579 |
+
if audio_latency_block_size is None:
|
580 |
+
self.audio_streaming_mask = None
|
581 |
+
return
|
582 |
+
|
583 |
+
# maximum sequence length
|
584 |
+
max_seqlen = (
|
585 |
+
self.config.max_source_positions
|
586 |
+
* self.conv1.stride[0]
|
587 |
+
* self.conv2.stride[0]
|
588 |
+
)
|
589 |
+
assert (
|
590 |
+
max_seqlen > 0
|
591 |
+
), f"maximum sequence length must be positive, got {max_seqlen}"
|
592 |
+
assert (
|
593 |
+
max_seqlen % audio_latency_block_size == 0
|
594 |
+
), f"audio_latency_block_size {audio_latency_block_size} must divide {max_seqlen} evenly."
|
595 |
+
# Given the block size, we calculate number of blocks.
|
596 |
+
audio_latency_nblocks = max_seqlen // audio_latency_block_size
|
597 |
+
audio_streaming_mask = (
|
598 |
+
torch.tril(
|
599 |
+
torch.ones(audio_latency_nblocks, audio_latency_nblocks),
|
600 |
+
diagonal=0,
|
601 |
+
)
|
602 |
+
.repeat_interleave(audio_latency_block_size, dim=0)
|
603 |
+
.repeat_interleave(audio_latency_block_size, dim=1)
|
604 |
+
)
|
605 |
+
audio_streaming_mask = (1.0 - audio_streaming_mask) * torch.finfo(dtype).min
|
606 |
+
audio_streaming_mask = audio_streaming_mask[None, None, :, :]
|
607 |
+
self.register_buffer(
|
608 |
+
"audio_streaming_mask", audio_streaming_mask, persistent=False
|
609 |
+
)
|
610 |
+
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
input_features,
|
614 |
+
audio_len=None,
|
615 |
+
head_mask=None,
|
616 |
+
output_attentions=None,
|
617 |
+
output_hidden_states=None,
|
618 |
+
return_dict=None,
|
619 |
+
):
|
620 |
+
expected_seq_length = (
|
621 |
+
self.config.max_source_positions
|
622 |
+
* self.conv1.stride[0]
|
623 |
+
* self.conv2.stride[0]
|
624 |
+
)
|
625 |
+
if input_features.shape[-1] > expected_seq_length:
|
626 |
+
raise ValueError(
|
627 |
+
f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
|
628 |
+
)
|
629 |
+
|
630 |
+
output_attentions = (
|
631 |
+
output_attentions
|
632 |
+
if output_attentions is not None
|
633 |
+
else self.config.output_attentions
|
634 |
+
)
|
635 |
+
output_hidden_states = (
|
636 |
+
output_hidden_states
|
637 |
+
if output_hidden_states is not None
|
638 |
+
else self.config.output_hidden_states
|
639 |
+
)
|
640 |
+
return_dict = (
|
641 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
642 |
+
)
|
643 |
+
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
644 |
+
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
645 |
+
|
646 |
+
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
647 |
+
embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
|
648 |
+
|
649 |
+
hidden_states = inputs_embeds + embed_pos
|
650 |
+
hidden_states = nn.functional.dropout(
|
651 |
+
hidden_states, p=self.dropout, training=self.training
|
652 |
+
)
|
653 |
+
|
654 |
+
encoder_states = () if output_hidden_states else None
|
655 |
+
all_attentions = () if output_attentions else None
|
656 |
+
|
657 |
+
# Create attention mask based on audio lengths to mask out padding tokens
|
658 |
+
# For each sample in batch:
|
659 |
+
# - Convert raw audio length to feature length after convolutions
|
660 |
+
# - Create boolean mask that is True for valid positions and False for padding
|
661 |
+
# - Convert to extended attention mask format expected by transformer layers
|
662 |
+
# (1.0 for positions to attend to, large negative for positions to ignore)
|
663 |
+
# This masking ensures consistent behavior between training and inference
|
664 |
+
# by preventing the model from attending to padding tokens in both cases
|
665 |
+
attention_mask = None
|
666 |
+
if audio_len != None:
|
667 |
+
audio_feature_len = self._get_feat_extract_output_lengths(audio_len)
|
668 |
+
max_seq_len = hidden_states.shape[1]
|
669 |
+
attention_mask = torch.arange(max_seq_len, device=hidden_states.device)[
|
670 |
+
None, :
|
671 |
+
].lt(audio_feature_len.view(-1, 1))
|
672 |
+
attention_mask = self.get_extended_attention_mask(
|
673 |
+
attention_mask,
|
674 |
+
None,
|
675 |
+
device=hidden_states.device,
|
676 |
+
dtype=hidden_states.dtype,
|
677 |
+
)
|
678 |
+
|
679 |
+
if self.audio_streaming_mask is not None:
|
680 |
+
seqlen = hidden_states.size(-2)
|
681 |
+
if attention_mask is not None:
|
682 |
+
attention_mask = torch.minimum(
|
683 |
+
self.audio_streaming_mask[:, :, :seqlen, :seqlen], attention_mask
|
684 |
+
) # merge
|
685 |
+
else:
|
686 |
+
attention_mask = self.audio_streaming_mask[:, :, :seqlen, :seqlen]
|
687 |
+
attention_mask = attention_mask.to(hidden_states.dtype)
|
688 |
+
|
689 |
+
# check if head_mask has a correct number of layers specified if desired
|
690 |
+
if head_mask is not None:
|
691 |
+
assert head_mask.size()[0] == (
|
692 |
+
len(self.layers)
|
693 |
+
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
694 |
+
|
695 |
+
for idx, encoder_layer in enumerate(self.layers):
|
696 |
+
if output_hidden_states:
|
697 |
+
encoder_states = encoder_states + (hidden_states,)
|
698 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
699 |
+
to_drop = False
|
700 |
+
if self.training:
|
701 |
+
dropout_probability = torch.rand([])
|
702 |
+
if dropout_probability < self.layerdrop: # skip the layer
|
703 |
+
to_drop = True
|
704 |
+
|
705 |
+
if to_drop:
|
706 |
+
layer_outputs = (None, None)
|
707 |
+
else:
|
708 |
+
if self.gradient_checkpointing and self.training:
|
709 |
+
layer_outputs = self._gradient_checkpointing_func(
|
710 |
+
encoder_layer.__call__,
|
711 |
+
hidden_states,
|
712 |
+
attention_mask,
|
713 |
+
(head_mask[idx] if head_mask is not None else None),
|
714 |
+
output_attentions,
|
715 |
+
)
|
716 |
+
else:
|
717 |
+
layer_outputs = encoder_layer(
|
718 |
+
hidden_states,
|
719 |
+
attention_mask,
|
720 |
+
layer_head_mask=(
|
721 |
+
head_mask[idx] if head_mask is not None else None
|
722 |
+
),
|
723 |
+
output_attentions=output_attentions,
|
724 |
+
)
|
725 |
+
|
726 |
+
hidden_states = layer_outputs[0]
|
727 |
+
|
728 |
+
if output_attentions:
|
729 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
730 |
+
|
731 |
+
hidden_states = self.layer_norm(hidden_states)
|
732 |
+
if output_hidden_states:
|
733 |
+
encoder_states = encoder_states + (hidden_states,)
|
734 |
+
|
735 |
+
if not return_dict:
|
736 |
+
return tuple(
|
737 |
+
v
|
738 |
+
for v in [hidden_states, encoder_states, all_attentions]
|
739 |
+
if v is not None
|
740 |
+
)
|
741 |
+
return transformers.modeling_outputs.BaseModelOutput(
|
742 |
+
last_hidden_state=hidden_states,
|
743 |
+
hidden_states=encoder_states,
|
744 |
+
attentions=all_attentions,
|
745 |
+
)
|
746 |
+
|
747 |
+
|
748 |
+
UltravoxConfig.register_for_auto_class()
|
749 |
+
UltravoxModel.register_for_auto_class()
|
750 |
+
|
751 |
+
transformers.AutoConfig.register("ultravox", UltravoxConfig)
|
752 |
+
transformers.AutoModel.register(UltravoxConfig, UltravoxModel)
|
753 |
+
|
754 |
+
transformers.activations.ACT2FN["swiglu"] = SwiGLU
|
checkpoint-10800/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-14400/config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"UltravoxModel"
|
4 |
+
],
|
5 |
+
"audio_latency_block_size": null,
|
6 |
+
"audio_model_id": "openai/whisper-large-v3-turbo",
|
7 |
+
"audio_model_lora_config": {
|
8 |
+
"lora_alpha": 8,
|
9 |
+
"r": 0,
|
10 |
+
"target_modules": [
|
11 |
+
"k_proj",
|
12 |
+
"q_proj",
|
13 |
+
"linear_k",
|
14 |
+
"linear_q"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
"auto_map": {
|
18 |
+
"AutoConfig": "ultravox_config.UltravoxConfig",
|
19 |
+
"AutoModel": "ultravox_model.UltravoxModel"
|
20 |
+
},
|
21 |
+
"hidden_size": 4096,
|
22 |
+
"ignore_index": -100,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"model_type": "ultravox",
|
25 |
+
"norm_init": 0.4,
|
26 |
+
"pad_token_id": 2,
|
27 |
+
"projector_act": "swiglu",
|
28 |
+
"projector_ln_mid": false,
|
29 |
+
"stack_factor": 8,
|
30 |
+
"text_model_id": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
31 |
+
"text_model_lora_config": {
|
32 |
+
"lora_alpha": 8,
|
33 |
+
"r": 0,
|
34 |
+
"target_modules": [
|
35 |
+
"k_proj",
|
36 |
+
"q_proj",
|
37 |
+
"linear_k",
|
38 |
+
"linear_q"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
"torch_dtype": "bfloat16",
|
42 |
+
"transformers_version": "4.47.0",
|
43 |
+
"vocab_size": 49152
|
44 |
+
}
|
checkpoint-14400/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 2,
|
6 |
+
"transformers_version": "4.47.0"
|
7 |
+
}
|
checkpoint-14400/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-14400/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8bdd0552282a75251fa0430873e29cc491e32579e4b6657f51579c7f5aa99ef
|
3 |
+
size 92299736
|
checkpoint-14400/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18631729e7d0e9597a4c02ca2b6facf9c52b83c22ea7c0e485c889fcb50a476f
|
3 |
+
size 184602962
|
checkpoint-14400/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:178471e10e4ada9e88a29563afc3ad35ab4ec31626343f0d29085b1cd7647911
|
3 |
+
size 14244
|
checkpoint-14400/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c57798d3fa88e9f7f19098498af2fbd85578814b976457ff05f5a72957807e9
|
3 |
+
size 1064
|
checkpoint-14400/special_tokens_map.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "<|im_start|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<|im_end|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"pad_token": "<|im_end|>",
|
21 |
+
"unk_token": {
|
22 |
+
"content": "<|endoftext|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
}
|
28 |
+
}
|
checkpoint-14400/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-14400/tokenizer_config.json
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<repo_name>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "<reponame>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"5": {
|
45 |
+
"content": "<file_sep>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"6": {
|
53 |
+
"content": "<filename>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"7": {
|
61 |
+
"content": "<gh_stars>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"8": {
|
69 |
+
"content": "<issue_start>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"9": {
|
77 |
+
"content": "<issue_comment>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"10": {
|
85 |
+
"content": "<issue_closed>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"11": {
|
93 |
+
"content": "<jupyter_start>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"12": {
|
101 |
+
"content": "<jupyter_text>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"13": {
|
109 |
+
"content": "<jupyter_code>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"14": {
|
117 |
+
"content": "<jupyter_output>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"15": {
|
125 |
+
"content": "<jupyter_script>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"16": {
|
133 |
+
"content": "<empty_output>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
}
|
140 |
+
},
|
141 |
+
"additional_special_tokens": [
|
142 |
+
"<|im_start|>",
|
143 |
+
"<|im_end|>"
|
144 |
+
],
|
145 |
+
"bos_token": "<|im_start|>",
|
146 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
147 |
+
"clean_up_tokenization_spaces": false,
|
148 |
+
"eos_token": "<|im_end|>",
|
149 |
+
"extra_special_tokens": {},
|
150 |
+
"model_max_length": 8192,
|
151 |
+
"pad_token": "<|im_end|>",
|
152 |
+
"tokenizer_class": "GPT2Tokenizer",
|
153 |
+
"unk_token": "<|endoftext|>",
|
154 |
+
"vocab_size": 49152
|
155 |
+
}
|
checkpoint-14400/trainer_state.json
ADDED
@@ -0,0 +1,1174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.11984619738002897,
|
5 |
+
"eval_steps": 1000,
|
6 |
+
"global_step": 14400,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 8.322652595835345e-06,
|
13 |
+
"grad_norm": 14.9375,
|
14 |
+
"learning_rate": 2e-06,
|
15 |
+
"loss": 0.6484,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0008322652595835345,
|
20 |
+
"grad_norm": 0.3671875,
|
21 |
+
"learning_rate": 0.0002,
|
22 |
+
"loss": 0.4345,
|
23 |
+
"step": 100
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.001664530519167069,
|
27 |
+
"grad_norm": 0.1689453125,
|
28 |
+
"learning_rate": 0.0004,
|
29 |
+
"loss": 0.2537,
|
30 |
+
"step": 200
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0024967957787506035,
|
34 |
+
"grad_norm": 0.55859375,
|
35 |
+
"learning_rate": 0.0006,
|
36 |
+
"loss": 0.2344,
|
37 |
+
"step": 300
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.003329061038334138,
|
41 |
+
"grad_norm": 0.154296875,
|
42 |
+
"learning_rate": 0.0008,
|
43 |
+
"loss": 0.222,
|
44 |
+
"step": 400
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.004161326297917672,
|
48 |
+
"grad_norm": 0.126953125,
|
49 |
+
"learning_rate": 0.001,
|
50 |
+
"loss": 0.2142,
|
51 |
+
"step": 500
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.004993591557501207,
|
55 |
+
"grad_norm": 0.12353515625,
|
56 |
+
"learning_rate": 0.0012,
|
57 |
+
"loss": 0.2011,
|
58 |
+
"step": 600
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.005825856817084741,
|
62 |
+
"grad_norm": 0.10693359375,
|
63 |
+
"learning_rate": 0.0014,
|
64 |
+
"loss": 0.1897,
|
65 |
+
"step": 700
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.006658122076668276,
|
69 |
+
"grad_norm": 0.10595703125,
|
70 |
+
"learning_rate": 0.0016,
|
71 |
+
"loss": 0.1775,
|
72 |
+
"step": 800
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.0074903873362518105,
|
76 |
+
"grad_norm": 0.0859375,
|
77 |
+
"learning_rate": 0.0018000000000000002,
|
78 |
+
"loss": 0.1615,
|
79 |
+
"step": 900
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.008322652595835344,
|
83 |
+
"grad_norm": 0.083984375,
|
84 |
+
"learning_rate": 0.002,
|
85 |
+
"loss": 0.1444,
|
86 |
+
"step": 1000
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.008322652595835344,
|
90 |
+
"eval_peoplespeech-clean-transcription_loss": 2.2110702991485596,
|
91 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
92 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.5405,
|
93 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.708,
|
94 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.839,
|
95 |
+
"step": 1000
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.009154917855418878,
|
99 |
+
"grad_norm": 0.0771484375,
|
100 |
+
"learning_rate": 0.001999725185109816,
|
101 |
+
"loss": 0.1323,
|
102 |
+
"step": 1100
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 0.009987183115002414,
|
106 |
+
"grad_norm": 0.083984375,
|
107 |
+
"learning_rate": 0.0019989008914857113,
|
108 |
+
"loss": 0.1242,
|
109 |
+
"step": 1200
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.010819448374585948,
|
113 |
+
"grad_norm": 0.07861328125,
|
114 |
+
"learning_rate": 0.00199752757218401,
|
115 |
+
"loss": 0.1162,
|
116 |
+
"step": 1300
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.011651713634169482,
|
120 |
+
"grad_norm": 0.07275390625,
|
121 |
+
"learning_rate": 0.001995605982021898,
|
122 |
+
"loss": 0.1128,
|
123 |
+
"step": 1400
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.012483978893753018,
|
127 |
+
"grad_norm": 0.07666015625,
|
128 |
+
"learning_rate": 0.0019931371771625545,
|
129 |
+
"loss": 0.1094,
|
130 |
+
"step": 1500
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.013316244153336551,
|
134 |
+
"grad_norm": 0.06201171875,
|
135 |
+
"learning_rate": 0.001990122514534651,
|
136 |
+
"loss": 0.1052,
|
137 |
+
"step": 1600
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.014148509412920085,
|
141 |
+
"grad_norm": 0.058837890625,
|
142 |
+
"learning_rate": 0.0019865636510865464,
|
143 |
+
"loss": 0.1022,
|
144 |
+
"step": 1700
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.014980774672503621,
|
148 |
+
"grad_norm": 0.0625,
|
149 |
+
"learning_rate": 0.001982462542875576,
|
150 |
+
"loss": 0.1011,
|
151 |
+
"step": 1800
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.015813039932087155,
|
155 |
+
"grad_norm": 0.06787109375,
|
156 |
+
"learning_rate": 0.001977821443992945,
|
157 |
+
"loss": 0.0983,
|
158 |
+
"step": 1900
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.01664530519167069,
|
162 |
+
"grad_norm": 0.0537109375,
|
163 |
+
"learning_rate": 0.001972642905324813,
|
164 |
+
"loss": 0.0975,
|
165 |
+
"step": 2000
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.01664530519167069,
|
169 |
+
"eval_peoplespeech-clean-transcription_loss": 1.6914767026901245,
|
170 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
171 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.5301,
|
172 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.716,
|
173 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.839,
|
174 |
+
"step": 2000
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 0.017477570451254223,
|
178 |
+
"grad_norm": 0.05859375,
|
179 |
+
"learning_rate": 0.0019669297731502505,
|
180 |
+
"loss": 0.0947,
|
181 |
+
"step": 2100
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.018309835710837757,
|
185 |
+
"grad_norm": 0.062255859375,
|
186 |
+
"learning_rate": 0.00196068518757684,
|
187 |
+
"loss": 0.0935,
|
188 |
+
"step": 2200
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.019142100970421294,
|
192 |
+
"grad_norm": 0.059326171875,
|
193 |
+
"learning_rate": 0.001953912580814779,
|
194 |
+
"loss": 0.0911,
|
195 |
+
"step": 2300
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.019974366230004828,
|
199 |
+
"grad_norm": 0.060302734375,
|
200 |
+
"learning_rate": 0.0019466156752904343,
|
201 |
+
"loss": 0.0904,
|
202 |
+
"step": 2400
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"epoch": 0.020806631489588362,
|
206 |
+
"grad_norm": 0.0615234375,
|
207 |
+
"learning_rate": 0.0019387984816003866,
|
208 |
+
"loss": 0.0882,
|
209 |
+
"step": 2500
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.021638896749171896,
|
213 |
+
"grad_norm": 0.056884765625,
|
214 |
+
"learning_rate": 0.0019304652963070869,
|
215 |
+
"loss": 0.0874,
|
216 |
+
"step": 2600
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 0.02247116200875543,
|
220 |
+
"grad_norm": 0.049072265625,
|
221 |
+
"learning_rate": 0.0019216206995773372,
|
222 |
+
"loss": 0.0871,
|
223 |
+
"step": 2700
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"epoch": 0.023303427268338964,
|
227 |
+
"grad_norm": 0.053955078125,
|
228 |
+
"learning_rate": 0.0019122695526648968,
|
229 |
+
"loss": 0.0856,
|
230 |
+
"step": 2800
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.0241356925279225,
|
234 |
+
"grad_norm": 0.05517578125,
|
235 |
+
"learning_rate": 0.0019024169952385887,
|
236 |
+
"loss": 0.0845,
|
237 |
+
"step": 2900
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.024967957787506035,
|
241 |
+
"grad_norm": 0.0546875,
|
242 |
+
"learning_rate": 0.0018920684425573864,
|
243 |
+
"loss": 0.0852,
|
244 |
+
"step": 3000
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"epoch": 0.024967957787506035,
|
248 |
+
"eval_peoplespeech-clean-transcription_loss": 1.6414048671722412,
|
249 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
250 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.8151,
|
251 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.521,
|
252 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.815,
|
253 |
+
"step": 3000
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 0.02580022304708957,
|
257 |
+
"grad_norm": 0.052978515625,
|
258 |
+
"learning_rate": 0.0018812295824940284,
|
259 |
+
"loss": 0.0836,
|
260 |
+
"step": 3100
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.026632488306673103,
|
264 |
+
"grad_norm": 0.05126953125,
|
265 |
+
"learning_rate": 0.0018699063724087904,
|
266 |
+
"loss": 0.0821,
|
267 |
+
"step": 3200
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.027464753566256637,
|
271 |
+
"grad_norm": 0.056884765625,
|
272 |
+
"learning_rate": 0.0018581050358751443,
|
273 |
+
"loss": 0.0816,
|
274 |
+
"step": 3300
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 0.02829701882584017,
|
278 |
+
"grad_norm": 0.045654296875,
|
279 |
+
"learning_rate": 0.0018458320592590974,
|
280 |
+
"loss": 0.0814,
|
281 |
+
"step": 3400
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.029129284085423705,
|
285 |
+
"grad_norm": 0.04638671875,
|
286 |
+
"learning_rate": 0.0018330941881540914,
|
287 |
+
"loss": 0.0791,
|
288 |
+
"step": 3500
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 0.029961549345007242,
|
292 |
+
"grad_norm": 0.043212890625,
|
293 |
+
"learning_rate": 0.0018198984236734246,
|
294 |
+
"loss": 0.0804,
|
295 |
+
"step": 3600
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"epoch": 0.030793814604590776,
|
299 |
+
"grad_norm": 0.054931640625,
|
300 |
+
"learning_rate": 0.0018062520186022297,
|
301 |
+
"loss": 0.0802,
|
302 |
+
"step": 3700
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.03162607986417431,
|
306 |
+
"grad_norm": 0.054931640625,
|
307 |
+
"learning_rate": 0.0017921624734111292,
|
308 |
+
"loss": 0.0805,
|
309 |
+
"step": 3800
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.032458345123757844,
|
313 |
+
"grad_norm": 0.048095703125,
|
314 |
+
"learning_rate": 0.001777637532133752,
|
315 |
+
"loss": 0.079,
|
316 |
+
"step": 3900
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 0.03329061038334138,
|
320 |
+
"grad_norm": 0.0458984375,
|
321 |
+
"learning_rate": 0.0017626851781103819,
|
322 |
+
"loss": 0.0759,
|
323 |
+
"step": 4000
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.03329061038334138,
|
327 |
+
"eval_peoplespeech-clean-transcription_loss": 1.5952188968658447,
|
328 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
329 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.4647,
|
330 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.762,
|
331 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.845,
|
332 |
+
"step": 4000
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.03412287564292491,
|
336 |
+
"grad_norm": 0.06494140625,
|
337 |
+
"learning_rate": 0.001747313629600077,
|
338 |
+
"loss": 0.0774,
|
339 |
+
"step": 4100
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.034955140902508446,
|
343 |
+
"grad_norm": 0.043701171875,
|
344 |
+
"learning_rate": 0.001731531335263669,
|
345 |
+
"loss": 0.0774,
|
346 |
+
"step": 4200
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.03578740616209198,
|
350 |
+
"grad_norm": 0.048095703125,
|
351 |
+
"learning_rate": 0.0017153469695201276,
|
352 |
+
"loss": 0.0769,
|
353 |
+
"step": 4300
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.03661967142167551,
|
357 |
+
"grad_norm": 0.051513671875,
|
358 |
+
"learning_rate": 0.0016987694277788418,
|
359 |
+
"loss": 0.0763,
|
360 |
+
"step": 4400
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.037451936681259054,
|
364 |
+
"grad_norm": 0.047607421875,
|
365 |
+
"learning_rate": 0.001681807821550438,
|
366 |
+
"loss": 0.0774,
|
367 |
+
"step": 4500
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.03828420194084259,
|
371 |
+
"grad_norm": 0.040283203125,
|
372 |
+
"learning_rate": 0.0016644714734388218,
|
373 |
+
"loss": 0.0748,
|
374 |
+
"step": 4600
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.03911646720042612,
|
378 |
+
"grad_norm": 0.05419921875,
|
379 |
+
"learning_rate": 0.0016467699120171987,
|
380 |
+
"loss": 0.0755,
|
381 |
+
"step": 4700
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.039948732460009656,
|
385 |
+
"grad_norm": 0.048828125,
|
386 |
+
"learning_rate": 0.001628712866590885,
|
387 |
+
"loss": 0.0732,
|
388 |
+
"step": 4800
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.04078099771959319,
|
392 |
+
"grad_norm": 0.046875,
|
393 |
+
"learning_rate": 0.0016103102618497923,
|
394 |
+
"loss": 0.0757,
|
395 |
+
"step": 4900
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.041613262979176724,
|
399 |
+
"grad_norm": 0.042236328125,
|
400 |
+
"learning_rate": 0.0015915722124135226,
|
401 |
+
"loss": 0.0738,
|
402 |
+
"step": 5000
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.041613262979176724,
|
406 |
+
"eval_peoplespeech-clean-transcription_loss": 1.5546748638153076,
|
407 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
408 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.345,
|
409 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.849,
|
410 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.856,
|
411 |
+
"step": 5000
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.04244552823876026,
|
415 |
+
"grad_norm": 0.045166015625,
|
416 |
+
"learning_rate": 0.001572509017272072,
|
417 |
+
"loss": 0.0742,
|
418 |
+
"step": 5100
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.04327779349834379,
|
422 |
+
"grad_norm": 0.0556640625,
|
423 |
+
"learning_rate": 0.0015531311541251993,
|
424 |
+
"loss": 0.0746,
|
425 |
+
"step": 5200
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.044110058757927326,
|
429 |
+
"grad_norm": 0.043212890625,
|
430 |
+
"learning_rate": 0.0015334492736235703,
|
431 |
+
"loss": 0.073,
|
432 |
+
"step": 5300
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 0.04494232401751086,
|
436 |
+
"grad_norm": 0.044921875,
|
437 |
+
"learning_rate": 0.0015134741935148419,
|
438 |
+
"loss": 0.0727,
|
439 |
+
"step": 5400
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 0.045774589277094394,
|
443 |
+
"grad_norm": 0.05029296875,
|
444 |
+
"learning_rate": 0.0014932168926979072,
|
445 |
+
"loss": 0.0726,
|
446 |
+
"step": 5500
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.04660685453667793,
|
450 |
+
"grad_norm": 0.048095703125,
|
451 |
+
"learning_rate": 0.0014726885051885652,
|
452 |
+
"loss": 0.0718,
|
453 |
+
"step": 5600
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.04743911979626146,
|
457 |
+
"grad_norm": 0.046875,
|
458 |
+
"learning_rate": 0.0014519003139999338,
|
459 |
+
"loss": 0.0736,
|
460 |
+
"step": 5700
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 0.048271385055845,
|
464 |
+
"grad_norm": 0.051513671875,
|
465 |
+
"learning_rate": 0.0014308637449409706,
|
466 |
+
"loss": 0.0724,
|
467 |
+
"step": 5800
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.049103650315428536,
|
471 |
+
"grad_norm": 0.053955078125,
|
472 |
+
"learning_rate": 0.0014095903603365066,
|
473 |
+
"loss": 0.0724,
|
474 |
+
"step": 5900
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.04993591557501207,
|
478 |
+
"grad_norm": 0.037841796875,
|
479 |
+
"learning_rate": 0.0013880918526722496,
|
480 |
+
"loss": 0.071,
|
481 |
+
"step": 6000
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 0.04993591557501207,
|
485 |
+
"eval_peoplespeech-clean-transcription_loss": 1.5297455787658691,
|
486 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
487 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.3364,
|
488 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.855,
|
489 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.857,
|
490 |
+
"step": 6000
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 0.050768180834595604,
|
494 |
+
"grad_norm": 0.05029296875,
|
495 |
+
"learning_rate": 0.0013663800381682463,
|
496 |
+
"loss": 0.0713,
|
497 |
+
"step": 6100
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.05160044609417914,
|
501 |
+
"grad_norm": 0.037109375,
|
502 |
+
"learning_rate": 0.0013444668502843329,
|
503 |
+
"loss": 0.0701,
|
504 |
+
"step": 6200
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 0.05243271135376267,
|
508 |
+
"grad_norm": 0.03564453125,
|
509 |
+
"learning_rate": 0.0013223643331611537,
|
510 |
+
"loss": 0.0708,
|
511 |
+
"step": 6300
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 0.053264976613346206,
|
515 |
+
"grad_norm": 0.04443359375,
|
516 |
+
"learning_rate": 0.001300084635000341,
|
517 |
+
"loss": 0.0707,
|
518 |
+
"step": 6400
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.05409724187292974,
|
522 |
+
"grad_norm": 0.033935546875,
|
523 |
+
"learning_rate": 0.0012776400013875004,
|
524 |
+
"loss": 0.0704,
|
525 |
+
"step": 6500
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.054929507132513274,
|
529 |
+
"grad_norm": 0.046142578125,
|
530 |
+
"learning_rate": 0.0012550427685616766,
|
531 |
+
"loss": 0.0707,
|
532 |
+
"step": 6600
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"epoch": 0.05576177239209681,
|
536 |
+
"grad_norm": 0.04150390625,
|
537 |
+
"learning_rate": 0.0012323053566349834,
|
538 |
+
"loss": 0.0696,
|
539 |
+
"step": 6700
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.05659403765168034,
|
543 |
+
"grad_norm": 0.042236328125,
|
544 |
+
"learning_rate": 0.0012094402627661448,
|
545 |
+
"loss": 0.0705,
|
546 |
+
"step": 6800
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"epoch": 0.057426302911263875,
|
550 |
+
"grad_norm": 0.035888671875,
|
551 |
+
"learning_rate": 0.0011864600542916813,
|
552 |
+
"loss": 0.0686,
|
553 |
+
"step": 6900
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 0.05825856817084741,
|
557 |
+
"grad_norm": 0.0498046875,
|
558 |
+
"learning_rate": 0.0011633773618185302,
|
559 |
+
"loss": 0.0687,
|
560 |
+
"step": 7000
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.05825856817084741,
|
564 |
+
"eval_peoplespeech-clean-transcription_loss": 1.518404483795166,
|
565 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
566 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.4703,
|
567 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.758,
|
568 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.845,
|
569 |
+
"step": 7000
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.05909083343043095,
|
573 |
+
"grad_norm": 0.034423828125,
|
574 |
+
"learning_rate": 0.0011402048722818862,
|
575 |
+
"loss": 0.0693,
|
576 |
+
"step": 7100
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.059923098690014484,
|
580 |
+
"grad_norm": 0.047119140625,
|
581 |
+
"learning_rate": 0.0011169553219720827,
|
582 |
+
"loss": 0.0697,
|
583 |
+
"step": 7200
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.06075536394959802,
|
587 |
+
"grad_norm": 0.0576171875,
|
588 |
+
"learning_rate": 0.001093641489534351,
|
589 |
+
"loss": 0.0685,
|
590 |
+
"step": 7300
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.06158762920918155,
|
594 |
+
"grad_norm": 0.052490234375,
|
595 |
+
"learning_rate": 0.001070276188945293,
|
596 |
+
"loss": 0.0666,
|
597 |
+
"step": 7400
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.062419894468765086,
|
601 |
+
"grad_norm": 0.043212890625,
|
602 |
+
"learning_rate": 0.00104687226246994,
|
603 |
+
"loss": 0.0692,
|
604 |
+
"step": 7500
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.06325215972834862,
|
608 |
+
"grad_norm": 0.04052734375,
|
609 |
+
"learning_rate": 0.0010234425736032607,
|
610 |
+
"loss": 0.069,
|
611 |
+
"step": 7600
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.06408442498793215,
|
615 |
+
"grad_norm": 0.06298828125,
|
616 |
+
"learning_rate": 0.001,
|
617 |
+
"loss": 0.0682,
|
618 |
+
"step": 7700
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.06491669024751569,
|
622 |
+
"grad_norm": 0.04736328125,
|
623 |
+
"learning_rate": 0.0009765574263967396,
|
624 |
+
"loss": 0.0676,
|
625 |
+
"step": 7800
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.06574895550709922,
|
629 |
+
"grad_norm": 0.064453125,
|
630 |
+
"learning_rate": 0.0009531277375300599,
|
631 |
+
"loss": 0.0685,
|
632 |
+
"step": 7900
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.06658122076668276,
|
636 |
+
"grad_norm": 0.037109375,
|
637 |
+
"learning_rate": 0.0009297238110547074,
|
638 |
+
"loss": 0.0677,
|
639 |
+
"step": 8000
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.06658122076668276,
|
643 |
+
"eval_peoplespeech-clean-transcription_loss": 1.5178765058517456,
|
644 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
645 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.3361,
|
646 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.855,
|
647 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.857,
|
648 |
+
"step": 8000
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.06741348602626629,
|
652 |
+
"grad_norm": 0.041259765625,
|
653 |
+
"learning_rate": 0.0009063585104656494,
|
654 |
+
"loss": 0.068,
|
655 |
+
"step": 8100
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.06824575128584982,
|
659 |
+
"grad_norm": 0.0390625,
|
660 |
+
"learning_rate": 0.0008830446780279176,
|
661 |
+
"loss": 0.0681,
|
662 |
+
"step": 8200
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.06907801654543336,
|
666 |
+
"grad_norm": 0.043212890625,
|
667 |
+
"learning_rate": 0.0008597951277181142,
|
668 |
+
"loss": 0.0677,
|
669 |
+
"step": 8300
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.06991028180501689,
|
673 |
+
"grad_norm": 0.054443359375,
|
674 |
+
"learning_rate": 0.0008366226381814697,
|
675 |
+
"loss": 0.0679,
|
676 |
+
"step": 8400
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.07074254706460043,
|
680 |
+
"grad_norm": 0.036865234375,
|
681 |
+
"learning_rate": 0.000813539945708319,
|
682 |
+
"loss": 0.0685,
|
683 |
+
"step": 8500
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 0.07157481232418396,
|
687 |
+
"grad_norm": 0.036865234375,
|
688 |
+
"learning_rate": 0.0007905597372338558,
|
689 |
+
"loss": 0.0678,
|
690 |
+
"step": 8600
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 0.07240707758376749,
|
694 |
+
"grad_norm": 0.03466796875,
|
695 |
+
"learning_rate": 0.0007676946433650169,
|
696 |
+
"loss": 0.0671,
|
697 |
+
"step": 8700
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.07323934284335103,
|
701 |
+
"grad_norm": 0.03857421875,
|
702 |
+
"learning_rate": 0.0007449572314383236,
|
703 |
+
"loss": 0.0659,
|
704 |
+
"step": 8800
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.07407160810293456,
|
708 |
+
"grad_norm": 0.04248046875,
|
709 |
+
"learning_rate": 0.0007223599986124993,
|
710 |
+
"loss": 0.0657,
|
711 |
+
"step": 8900
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.07490387336251811,
|
715 |
+
"grad_norm": 0.0517578125,
|
716 |
+
"learning_rate": 0.0006999153649996595,
|
717 |
+
"loss": 0.0662,
|
718 |
+
"step": 9000
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 0.07490387336251811,
|
722 |
+
"eval_peoplespeech-clean-transcription_loss": 1.49990975856781,
|
723 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
724 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.6057,
|
725 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.663,
|
726 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.833,
|
727 |
+
"step": 9000
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 0.07573613862210164,
|
731 |
+
"grad_norm": 0.05419921875,
|
732 |
+
"learning_rate": 0.0006776356668388464,
|
733 |
+
"loss": 0.0659,
|
734 |
+
"step": 9100
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.07656840388168518,
|
738 |
+
"grad_norm": 0.041015625,
|
739 |
+
"learning_rate": 0.0006555331497156671,
|
740 |
+
"loss": 0.0656,
|
741 |
+
"step": 9200
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.07740066914126871,
|
745 |
+
"grad_norm": 0.08203125,
|
746 |
+
"learning_rate": 0.0006336199618317538,
|
747 |
+
"loss": 0.0663,
|
748 |
+
"step": 9300
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 0.07823293440085224,
|
752 |
+
"grad_norm": 0.03271484375,
|
753 |
+
"learning_rate": 0.0006119081473277501,
|
754 |
+
"loss": 0.0663,
|
755 |
+
"step": 9400
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 0.07906519966043578,
|
759 |
+
"grad_norm": 0.043212890625,
|
760 |
+
"learning_rate": 0.0005904096396634935,
|
761 |
+
"loss": 0.0642,
|
762 |
+
"step": 9500
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"epoch": 0.07989746492001931,
|
766 |
+
"grad_norm": 0.03271484375,
|
767 |
+
"learning_rate": 0.0005691362550590297,
|
768 |
+
"loss": 0.0644,
|
769 |
+
"step": 9600
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.08072973017960285,
|
773 |
+
"grad_norm": 0.047607421875,
|
774 |
+
"learning_rate": 0.0005480996860000663,
|
775 |
+
"loss": 0.0648,
|
776 |
+
"step": 9700
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.08156199543918638,
|
780 |
+
"grad_norm": 0.03955078125,
|
781 |
+
"learning_rate": 0.0005273114948114346,
|
782 |
+
"loss": 0.0655,
|
783 |
+
"step": 9800
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.08239426069876991,
|
787 |
+
"grad_norm": 0.048095703125,
|
788 |
+
"learning_rate": 0.0005067831073020928,
|
789 |
+
"loss": 0.0651,
|
790 |
+
"step": 9900
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 0.08322652595835345,
|
794 |
+
"grad_norm": 0.0299072265625,
|
795 |
+
"learning_rate": 0.00048652580648515787,
|
796 |
+
"loss": 0.066,
|
797 |
+
"step": 10000
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.08322652595835345,
|
801 |
+
"eval_peoplespeech-clean-transcription_loss": 1.489192247390747,
|
802 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
803 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.4911,
|
804 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.743,
|
805 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.843,
|
806 |
+
"step": 10000
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.08405879121793698,
|
810 |
+
"grad_norm": 0.055908203125,
|
811 |
+
"learning_rate": 0.0004665507263764299,
|
812 |
+
"loss": 0.0653,
|
813 |
+
"step": 10100
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.08489105647752052,
|
817 |
+
"grad_norm": 0.039794921875,
|
818 |
+
"learning_rate": 0.0004468688458748006,
|
819 |
+
"loss": 0.065,
|
820 |
+
"step": 10200
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"epoch": 0.08572332173710405,
|
824 |
+
"grad_norm": 0.05322265625,
|
825 |
+
"learning_rate": 0.0004274909827279283,
|
826 |
+
"loss": 0.0654,
|
827 |
+
"step": 10300
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 0.08655558699668758,
|
831 |
+
"grad_norm": 0.0419921875,
|
832 |
+
"learning_rate": 0.0004084277875864776,
|
833 |
+
"loss": 0.0648,
|
834 |
+
"step": 10400
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 0.08738785225627112,
|
838 |
+
"grad_norm": 0.050537109375,
|
839 |
+
"learning_rate": 0.00038968973815020803,
|
840 |
+
"loss": 0.0643,
|
841 |
+
"step": 10500
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 0.08822011751585465,
|
845 |
+
"grad_norm": 0.0458984375,
|
846 |
+
"learning_rate": 0.00037128713340911534,
|
847 |
+
"loss": 0.0669,
|
848 |
+
"step": 10600
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 0.08905238277543819,
|
852 |
+
"grad_norm": 0.05029296875,
|
853 |
+
"learning_rate": 0.00035323008798280133,
|
854 |
+
"loss": 0.0657,
|
855 |
+
"step": 10700
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.08988464803502172,
|
859 |
+
"grad_norm": 0.039794921875,
|
860 |
+
"learning_rate": 0.00033552852656117837,
|
861 |
+
"loss": 0.0646,
|
862 |
+
"step": 10800
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"epoch": 0.09071691329460525,
|
866 |
+
"grad_norm": 0.04248046875,
|
867 |
+
"learning_rate": 0.00031819217844956217,
|
868 |
+
"loss": 0.0636,
|
869 |
+
"step": 10900
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 0.09154917855418879,
|
873 |
+
"grad_norm": 0.05029296875,
|
874 |
+
"learning_rate": 0.00030123057222115836,
|
875 |
+
"loss": 0.0658,
|
876 |
+
"step": 11000
|
877 |
+
},
|
878 |
+
{
|
879 |
+
"epoch": 0.09154917855418879,
|
880 |
+
"eval_peoplespeech-clean-transcription_loss": 1.4850726127624512,
|
881 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
882 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.5339,
|
883 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.713,
|
884 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.839,
|
885 |
+
"step": 11000
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.09238144381377232,
|
889 |
+
"grad_norm": 0.039794921875,
|
890 |
+
"learning_rate": 0.0002846530304798727,
|
891 |
+
"loss": 0.0641,
|
892 |
+
"step": 11100
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.09321370907335585,
|
896 |
+
"grad_norm": 0.048095703125,
|
897 |
+
"learning_rate": 0.00026846866473633125,
|
898 |
+
"loss": 0.065,
|
899 |
+
"step": 11200
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.09404597433293939,
|
903 |
+
"grad_norm": 0.0458984375,
|
904 |
+
"learning_rate": 0.00025268637039992293,
|
905 |
+
"loss": 0.065,
|
906 |
+
"step": 11300
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.09487823959252292,
|
910 |
+
"grad_norm": 0.045166015625,
|
911 |
+
"learning_rate": 0.00023731482188961818,
|
912 |
+
"loss": 0.0654,
|
913 |
+
"step": 11400
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.09571050485210646,
|
917 |
+
"grad_norm": 0.04150390625,
|
918 |
+
"learning_rate": 0.00022236246786624792,
|
919 |
+
"loss": 0.0661,
|
920 |
+
"step": 11500
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.09654277011169,
|
924 |
+
"grad_norm": 0.036376953125,
|
925 |
+
"learning_rate": 0.00020783752658887068,
|
926 |
+
"loss": 0.066,
|
927 |
+
"step": 11600
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.09737503537127354,
|
931 |
+
"grad_norm": 0.044189453125,
|
932 |
+
"learning_rate": 0.0001937479813977703,
|
933 |
+
"loss": 0.0649,
|
934 |
+
"step": 11700
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.09820730063085707,
|
938 |
+
"grad_norm": 0.037353515625,
|
939 |
+
"learning_rate": 0.00018010157632657541,
|
940 |
+
"loss": 0.0636,
|
941 |
+
"step": 11800
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.0990395658904406,
|
945 |
+
"grad_norm": 0.0341796875,
|
946 |
+
"learning_rate": 0.00016690581184590858,
|
947 |
+
"loss": 0.0649,
|
948 |
+
"step": 11900
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.09987183115002414,
|
952 |
+
"grad_norm": 0.052001953125,
|
953 |
+
"learning_rate": 0.00015416794074090258,
|
954 |
+
"loss": 0.0663,
|
955 |
+
"step": 12000
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.09987183115002414,
|
959 |
+
"eval_peoplespeech-clean-transcription_loss": 1.485172986984253,
|
960 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
961 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.8864,
|
962 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.474,
|
963 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.809,
|
964 |
+
"step": 12000
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 0.10070409640960767,
|
968 |
+
"grad_norm": 0.0400390625,
|
969 |
+
"learning_rate": 0.00014189496412485593,
|
970 |
+
"loss": 0.0634,
|
971 |
+
"step": 12100
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 0.10153636166919121,
|
975 |
+
"grad_norm": 0.049072265625,
|
976 |
+
"learning_rate": 0.00013009362759120978,
|
977 |
+
"loss": 0.0641,
|
978 |
+
"step": 12200
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 0.10236862692877474,
|
982 |
+
"grad_norm": 0.054931640625,
|
983 |
+
"learning_rate": 0.00011877041750597173,
|
984 |
+
"loss": 0.0635,
|
985 |
+
"step": 12300
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 0.10320089218835828,
|
989 |
+
"grad_norm": 0.041015625,
|
990 |
+
"learning_rate": 0.00010793155744261352,
|
991 |
+
"loss": 0.0656,
|
992 |
+
"step": 12400
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 0.10403315744794181,
|
996 |
+
"grad_norm": 0.042724609375,
|
997 |
+
"learning_rate": 9.758300476141169e-05,
|
998 |
+
"loss": 0.0658,
|
999 |
+
"step": 12500
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.10486542270752534,
|
1003 |
+
"grad_norm": 0.046875,
|
1004 |
+
"learning_rate": 8.773044733510338e-05,
|
1005 |
+
"loss": 0.0655,
|
1006 |
+
"step": 12600
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 0.10569768796710888,
|
1010 |
+
"grad_norm": 0.052001953125,
|
1011 |
+
"learning_rate": 7.837930042266262e-05,
|
1012 |
+
"loss": 0.0652,
|
1013 |
+
"step": 12700
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"epoch": 0.10652995322669241,
|
1017 |
+
"grad_norm": 0.044677734375,
|
1018 |
+
"learning_rate": 6.953470369291348e-05,
|
1019 |
+
"loss": 0.0652,
|
1020 |
+
"step": 12800
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 0.10736221848627595,
|
1024 |
+
"grad_norm": 0.04443359375,
|
1025 |
+
"learning_rate": 6.120151839961363e-05,
|
1026 |
+
"loss": 0.0639,
|
1027 |
+
"step": 12900
|
1028 |
+
},
|
1029 |
+
{
|
1030 |
+
"epoch": 0.10819448374585948,
|
1031 |
+
"grad_norm": 0.03955078125,
|
1032 |
+
"learning_rate": 5.338432470956589e-05,
|
1033 |
+
"loss": 0.0648,
|
1034 |
+
"step": 13000
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.10819448374585948,
|
1038 |
+
"eval_peoplespeech-clean-transcription_loss": 1.4848434925079346,
|
1039 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
1040 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.5215,
|
1041 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.722,
|
1042 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.84,
|
1043 |
+
"step": 13000
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"epoch": 0.10902674900544301,
|
1047 |
+
"grad_norm": 0.04541015625,
|
1048 |
+
"learning_rate": 4.6087419185220966e-05,
|
1049 |
+
"loss": 0.0632,
|
1050 |
+
"step": 13100
|
1051 |
+
},
|
1052 |
+
{
|
1053 |
+
"epoch": 0.10985901426502655,
|
1054 |
+
"grad_norm": 0.050048828125,
|
1055 |
+
"learning_rate": 3.931481242315993e-05,
|
1056 |
+
"loss": 0.0624,
|
1057 |
+
"step": 13200
|
1058 |
+
},
|
1059 |
+
{
|
1060 |
+
"epoch": 0.11069127952461008,
|
1061 |
+
"grad_norm": 0.0439453125,
|
1062 |
+
"learning_rate": 3.307022684974936e-05,
|
1063 |
+
"loss": 0.0649,
|
1064 |
+
"step": 13300
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.11152354478419362,
|
1068 |
+
"grad_norm": 0.047119140625,
|
1069 |
+
"learning_rate": 2.7357094675186987e-05,
|
1070 |
+
"loss": 0.0644,
|
1071 |
+
"step": 13400
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.11235581004377715,
|
1075 |
+
"grad_norm": 0.042236328125,
|
1076 |
+
"learning_rate": 2.2178556007054874e-05,
|
1077 |
+
"loss": 0.0644,
|
1078 |
+
"step": 13500
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"epoch": 0.11318807530336068,
|
1082 |
+
"grad_norm": 0.03564453125,
|
1083 |
+
"learning_rate": 1.7537457124423894e-05,
|
1084 |
+
"loss": 0.0664,
|
1085 |
+
"step": 13600
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"epoch": 0.11402034056294422,
|
1089 |
+
"grad_norm": 0.05859375,
|
1090 |
+
"learning_rate": 1.3436348913453578e-05,
|
1091 |
+
"loss": 0.0653,
|
1092 |
+
"step": 13700
|
1093 |
+
},
|
1094 |
+
{
|
1095 |
+
"epoch": 0.11485260582252775,
|
1096 |
+
"grad_norm": 0.046875,
|
1097 |
+
"learning_rate": 9.877485465349056e-06,
|
1098 |
+
"loss": 0.0646,
|
1099 |
+
"step": 13800
|
1100 |
+
},
|
1101 |
+
{
|
1102 |
+
"epoch": 0.11568487108211128,
|
1103 |
+
"grad_norm": 0.030517578125,
|
1104 |
+
"learning_rate": 6.862822837445881e-06,
|
1105 |
+
"loss": 0.0663,
|
1106 |
+
"step": 13900
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.11651713634169482,
|
1110 |
+
"grad_norm": 0.03759765625,
|
1111 |
+
"learning_rate": 4.394017978101905e-06,
|
1112 |
+
"loss": 0.0648,
|
1113 |
+
"step": 14000
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.11651713634169482,
|
1117 |
+
"eval_peoplespeech-clean-transcription_loss": 1.4849343299865723,
|
1118 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
1119 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.3501,
|
1120 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.845,
|
1121 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.856,
|
1122 |
+
"step": 14000
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.11734940160127835,
|
1126 |
+
"grad_norm": 0.045166015625,
|
1127 |
+
"learning_rate": 2.472427815989886e-06,
|
1128 |
+
"loss": 0.0636,
|
1129 |
+
"step": 14100
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.1181816668608619,
|
1133 |
+
"grad_norm": 0.0361328125,
|
1134 |
+
"learning_rate": 1.099108514288627e-06,
|
1135 |
+
"loss": 0.0646,
|
1136 |
+
"step": 14200
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.11901393212044543,
|
1140 |
+
"grad_norm": 0.04052734375,
|
1141 |
+
"learning_rate": 2.748148901841052e-07,
|
1142 |
+
"loss": 0.0645,
|
1143 |
+
"step": 14300
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.11984619738002897,
|
1147 |
+
"grad_norm": 0.056396484375,
|
1148 |
+
"learning_rate": 0.0,
|
1149 |
+
"loss": 0.0661,
|
1150 |
+
"step": 14400
|
1151 |
+
}
|
1152 |
+
],
|
1153 |
+
"logging_steps": 100,
|
1154 |
+
"max_steps": 14400,
|
1155 |
+
"num_input_tokens_seen": 0,
|
1156 |
+
"num_train_epochs": 1,
|
1157 |
+
"save_steps": 3600,
|
1158 |
+
"stateful_callbacks": {
|
1159 |
+
"TrainerControl": {
|
1160 |
+
"args": {
|
1161 |
+
"should_epoch_stop": false,
|
1162 |
+
"should_evaluate": false,
|
1163 |
+
"should_log": false,
|
1164 |
+
"should_save": true,
|
1165 |
+
"should_training_stop": true
|
1166 |
+
},
|
1167 |
+
"attributes": {}
|
1168 |
+
}
|
1169 |
+
},
|
1170 |
+
"total_flos": 9.254469835026432e+17,
|
1171 |
+
"train_batch_size": 24,
|
1172 |
+
"trial_name": null,
|
1173 |
+
"trial_params": null
|
1174 |
+
}
|
checkpoint-14400/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37b86db64b66888697120b24a102f1ab62ab1d7da7b6bd4cd2e497d4499c3fb5
|
3 |
+
size 5688
|
checkpoint-14400/ultravox_config.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from enum import Enum
|
3 |
+
from typing import Any, Dict, List, Optional
|
4 |
+
|
5 |
+
import transformers
|
6 |
+
|
7 |
+
|
8 |
+
@dataclasses.dataclass
|
9 |
+
class LoraConfigSimplified:
|
10 |
+
"""
|
11 |
+
Low Rank Approximation (LoRA) configuration.
|
12 |
+
|
13 |
+
Used for language and audio models separately.
|
14 |
+
"""
|
15 |
+
|
16 |
+
# The rank of the approximation
|
17 |
+
r: int = 0
|
18 |
+
lora_alpha: float = 8
|
19 |
+
target_modules: Optional[List[str]] = dataclasses.field(
|
20 |
+
default_factory=lambda: ["k_proj", "q_proj", "linear_k", "linear_q"]
|
21 |
+
)
|
22 |
+
# A list of module names regex patterns to unfreeze. Only used if r == 0.
|
23 |
+
unfreeze_layers: Optional[List[str]] = None
|
24 |
+
|
25 |
+
|
26 |
+
class LossFunction(str, Enum):
|
27 |
+
CrossEntropy = "ce"
|
28 |
+
KL_Divergence = "kl"
|
29 |
+
|
30 |
+
|
31 |
+
@dataclasses.dataclass
|
32 |
+
class LossConfig:
|
33 |
+
loss_function: LossFunction = LossFunction.CrossEntropy
|
34 |
+
kl_temperature: float = 2.0
|
35 |
+
|
36 |
+
@property
|
37 |
+
def requires_alt_fields(self):
|
38 |
+
return self.loss_function == LossFunction.KL_Divergence
|
39 |
+
|
40 |
+
|
41 |
+
class UltravoxConfig(transformers.PretrainedConfig):
|
42 |
+
r"""
|
43 |
+
This is the configuration class to store the configuration of a [`UltravoxForConditionalGeneration`]. It is used to instantiate an
|
44 |
+
Ultravox model according to the specified arguments, defining the model architecture.
|
45 |
+
|
46 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
47 |
+
documentation from [`PretrainedConfig`] for more information.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
audio_config (`Wav2Vec2Config`, *optional*):
|
51 |
+
Custom audio config or dict
|
52 |
+
text_config (`Union[AutoConfig, dict]`, *optional*):
|
53 |
+
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
|
54 |
+
ignore_index (`int`, *optional*, defaults to -100):
|
55 |
+
The ignore index for the loss function.
|
56 |
+
audio_token_index (`int`, *optional*, defaults to 32000):
|
57 |
+
The audio token index to encode the audio prompt.
|
58 |
+
stack_factor (`int`, *optional*, defaults to 8):
|
59 |
+
Audio downsampling factor for the multimodal projector.
|
60 |
+
norm_init (`float`, *optional*, defaults to 0.4):
|
61 |
+
The initialization value for the layer normalization.
|
62 |
+
projector_act (`str`, *optional*, defaults to `"swiglu"`):
|
63 |
+
The activation function used by the multimodal projector.
|
64 |
+
text_model_lora_config (`LoraConfigSimplified`, *optional*):
|
65 |
+
The LoRA configuration for finetuning the text model.
|
66 |
+
audio_model_lora_config (`LoraConfigSimplified`, *optional*):
|
67 |
+
The LoRA configuration for finetuning the audio model.
|
68 |
+
audio_latency_block_size (`int`, *optional*, defaults to `None`):
|
69 |
+
The latency block size for simulating audio streaming.
|
70 |
+
|
71 |
+
|
72 |
+
Example:
|
73 |
+
|
74 |
+
```python
|
75 |
+
>>> from transformers import UltravoxModel, Wav2Vec2Config, UltravoxConfig, LlamaConfig
|
76 |
+
|
77 |
+
>>> # Initializing an audio encoder config
|
78 |
+
>>> audio_config = Wav2Vec2Config()
|
79 |
+
|
80 |
+
>>> # Initializing a Llama config
|
81 |
+
>>> text_config = LlamaConfig()
|
82 |
+
|
83 |
+
>>> # Initializing a default configuration
|
84 |
+
>>> configuration = UltravoxConfig(audio_config, text_config)
|
85 |
+
|
86 |
+
>>> # Initializing a completely untrained model from the configuration
|
87 |
+
>>> model = UltravoxModel(configuration)
|
88 |
+
|
89 |
+
>>> # Accessing the model configuration
|
90 |
+
>>> configuration = model.config
|
91 |
+
|
92 |
+
>>> # Initialize a model from pretrained checkpoints and random projector weights
|
93 |
+
>>> config = UltravoxConfig(audio_model_id="facebook/wav2vec2-base-960h", text_model_id="meta-llama/Llama-2-7b-chat-hf")
|
94 |
+
```"""
|
95 |
+
|
96 |
+
model_type = "ultravox"
|
97 |
+
is_composition = False
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
audio_config: Optional[Dict[str, Any]] = None,
|
102 |
+
text_config: Optional[Dict[str, Any]] = None,
|
103 |
+
audio_model_id: Optional[str] = None,
|
104 |
+
text_model_id: Optional[str] = None,
|
105 |
+
ignore_index: int = -100,
|
106 |
+
hidden_size: int = 4096,
|
107 |
+
stack_factor: int = 8,
|
108 |
+
norm_init: float = 0.4,
|
109 |
+
projector_act: str = "swiglu",
|
110 |
+
projector_ln_mid: bool = False, # defaults to False for compatibility with v0.4.1 and below
|
111 |
+
text_model_lora_config: Optional[LoraConfigSimplified] = None,
|
112 |
+
audio_model_lora_config: Optional[LoraConfigSimplified] = None,
|
113 |
+
audio_latency_block_size: Optional[int] = None,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
self.ignore_index = ignore_index
|
117 |
+
|
118 |
+
self.audio_model_id = audio_model_id
|
119 |
+
self.text_model_id = text_model_id
|
120 |
+
|
121 |
+
self.hidden_size = hidden_size
|
122 |
+
self.stack_factor = stack_factor
|
123 |
+
self.norm_init = norm_init
|
124 |
+
self.projector_act = projector_act
|
125 |
+
self.projector_ln_mid = projector_ln_mid
|
126 |
+
if text_model_id is not None:
|
127 |
+
self.text_config: transformers.LlamaConfig = (
|
128 |
+
transformers.AutoConfig.from_pretrained(text_model_id)
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
text_config = text_config or {}
|
132 |
+
self.text_config = transformers.CONFIG_MAPPING[
|
133 |
+
text_config.get("model_type", "llama")
|
134 |
+
](**text_config)
|
135 |
+
|
136 |
+
if audio_model_id is not None:
|
137 |
+
self.audio_config: transformers.PretrainedConfig = (
|
138 |
+
transformers.AutoConfig.from_pretrained(audio_model_id)
|
139 |
+
)
|
140 |
+
else:
|
141 |
+
audio_config = audio_config or {}
|
142 |
+
self.audio_config = transformers.CONFIG_MAPPING[
|
143 |
+
audio_config.get("model_type", "wav2vec2")
|
144 |
+
](**audio_config)
|
145 |
+
|
146 |
+
self.text_model_lora_config = (
|
147 |
+
text_model_lora_config
|
148 |
+
if isinstance(text_model_lora_config, dict)
|
149 |
+
else dataclasses.asdict(text_model_lora_config or LoraConfigSimplified())
|
150 |
+
)
|
151 |
+
self.audio_model_lora_config = (
|
152 |
+
audio_model_lora_config
|
153 |
+
if isinstance(audio_model_lora_config, dict)
|
154 |
+
else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
|
155 |
+
)
|
156 |
+
self.audio_latency_block_size = audio_latency_block_size
|
157 |
+
|
158 |
+
self.vocab_size = self.text_config.vocab_size
|
159 |
+
|
160 |
+
self.initializer_range = self.text_config.initializer_range
|
161 |
+
|
162 |
+
super().__init__(**kwargs)
|
163 |
+
|
164 |
+
def to_diff_dict(self) -> Dict[str, Any]:
|
165 |
+
diff_dict = super().to_diff_dict()
|
166 |
+
|
167 |
+
# remove text_config and audio_config if text_model_id and audio_model_id are present
|
168 |
+
if self.text_model_id is not None:
|
169 |
+
diff_dict.pop("text_config", None)
|
170 |
+
if self.audio_model_id is not None:
|
171 |
+
diff_dict.pop("audio_config", None)
|
172 |
+
|
173 |
+
return diff_dict
|
checkpoint-14400/ultravox_model.py
ADDED
@@ -0,0 +1,754 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import re
|
3 |
+
from typing import Any, Dict, Optional, Set, Tuple, Union
|
4 |
+
|
5 |
+
import peft
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import transformers
|
10 |
+
import transformers.activations
|
11 |
+
import transformers.modeling_outputs
|
12 |
+
import transformers.models
|
13 |
+
from transformers.models.whisper import modeling_whisper as whisper
|
14 |
+
|
15 |
+
# We must use relative import in this directory to allow uploading to HF Hub
|
16 |
+
# Even "from . import X" pattern doesn't work (undocumented and unclear why)
|
17 |
+
from .ultravox_config import LossConfig
|
18 |
+
from .ultravox_config import LossFunction
|
19 |
+
from .ultravox_config import UltravoxConfig
|
20 |
+
|
21 |
+
|
22 |
+
class UltravoxModel(transformers.LlamaPreTrainedModel):
|
23 |
+
"""
|
24 |
+
The Ultravox model which consists of an audio encoder and a language model.
|
25 |
+
|
26 |
+
Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
|
27 |
+
projected to the language model's embedding space using a few linear layers.
|
28 |
+
The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
|
29 |
+
|
30 |
+
A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
|
31 |
+
|
32 |
+
Parameters:
|
33 |
+
config: Model configuration class with all the parameters of the model.
|
34 |
+
"""
|
35 |
+
|
36 |
+
config_class = UltravoxConfig
|
37 |
+
config: UltravoxConfig # for type hinting
|
38 |
+
# Usually we load encoder and LLM weights from a pretrained model separately, so they are allowed to be missing
|
39 |
+
_keys_to_ignore_on_load_missing = ["audio_tower.*", "language_model.*"]
|
40 |
+
# Since we have kwargs in forward, we need to set this to False, otherwise grad_accum_steps will cause incorrect train loss to be reported
|
41 |
+
# see https://github.com/huggingface/transformers/issues/35856 and https://github.com/huggingface/trl/pull/2615/files
|
42 |
+
accepts_loss_kwargs = False
|
43 |
+
|
44 |
+
def __init__(self, config: UltravoxConfig):
|
45 |
+
super().__init__(config)
|
46 |
+
self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook)
|
47 |
+
|
48 |
+
self.keep_params: Set[str] = set()
|
49 |
+
self.vocab_size = config.vocab_size
|
50 |
+
|
51 |
+
self.audio_tower = self._create_audio_tower(config)
|
52 |
+
self.multi_modal_projector = self._create_multi_modal_projector(config)
|
53 |
+
self.language_model = self._create_language_model(config)
|
54 |
+
|
55 |
+
# Determine no_split_modules dynamically to use with FSDP auto_wrap policy.
|
56 |
+
# FSDP throws an error if some of the layer types are not found in the model.
|
57 |
+
# This would be something like ["LlamaDecoderLayer", "WhisperEncoderLayer"]
|
58 |
+
self._no_split_modules = (self.language_model._no_split_modules or []) + (
|
59 |
+
self.audio_tower._no_split_modules or []
|
60 |
+
)
|
61 |
+
|
62 |
+
self.loss_config = LossConfig()
|
63 |
+
self.post_init()
|
64 |
+
|
65 |
+
def get_input_embeddings(self):
|
66 |
+
return self.language_model.get_input_embeddings()
|
67 |
+
|
68 |
+
def set_input_embeddings(self, value):
|
69 |
+
self.language_model.set_input_embeddings(value)
|
70 |
+
|
71 |
+
def get_output_embeddings(self):
|
72 |
+
return self.language_model.get_output_embeddings()
|
73 |
+
|
74 |
+
def set_output_embeddings(self, new_embeddings):
|
75 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
76 |
+
|
77 |
+
def set_decoder(self, decoder):
|
78 |
+
self.language_model.set_decoder(decoder)
|
79 |
+
|
80 |
+
def get_decoder(self):
|
81 |
+
return self.language_model.get_decoder()
|
82 |
+
|
83 |
+
def tie_weights(self):
|
84 |
+
return self.language_model.tie_weights()
|
85 |
+
|
86 |
+
def set_loss_config(self, loss_config: LossConfig):
|
87 |
+
self.loss_config = loss_config
|
88 |
+
|
89 |
+
def _setup_cache(
|
90 |
+
self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
|
91 |
+
):
|
92 |
+
self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
|
93 |
+
|
94 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
95 |
+
return self.language_model._reorder_cache(past_key_values, beam_idx)
|
96 |
+
|
97 |
+
def resize_token_embeddings(
|
98 |
+
self,
|
99 |
+
new_num_tokens: Optional[int] = None,
|
100 |
+
pad_to_multiple_of: Optional[int] = None,
|
101 |
+
) -> nn.Embedding:
|
102 |
+
model_embeds = self.language_model.resize_token_embeddings(
|
103 |
+
new_num_tokens, pad_to_multiple_of
|
104 |
+
)
|
105 |
+
# update vocab size
|
106 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
107 |
+
self.config.vocab_size = model_embeds.num_embeddings
|
108 |
+
self.vocab_size = model_embeds.num_embeddings
|
109 |
+
return model_embeds
|
110 |
+
|
111 |
+
def _compute_kl_loss(
|
112 |
+
self,
|
113 |
+
lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
|
114 |
+
labels: Optional[torch.Tensor] = None,
|
115 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
116 |
+
alt_input_ids: Optional[torch.Tensor] = None,
|
117 |
+
alt_attention_mask: Optional[torch.Tensor] = None,
|
118 |
+
alt_labels: Optional[torch.Tensor] = None,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
# disable gradient computation for the teacher model
|
122 |
+
with torch.no_grad():
|
123 |
+
# compute the teacher (text-only) model's distribution
|
124 |
+
alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
|
125 |
+
alt_lm_output = self.language_model.forward(
|
126 |
+
inputs_embeds=alt_inputs_embeds,
|
127 |
+
labels=alt_labels,
|
128 |
+
attention_mask=alt_attention_mask,
|
129 |
+
past_key_values=past_key_values,
|
130 |
+
**kwargs,
|
131 |
+
)
|
132 |
+
# compute the KL divergence loss between the two models
|
133 |
+
kl_loss = F.kl_div(
|
134 |
+
F.log_softmax(
|
135 |
+
lm_output.logits[labels != -100] / self.loss_config.kl_temperature,
|
136 |
+
dim=-1,
|
137 |
+
),
|
138 |
+
F.softmax(
|
139 |
+
alt_lm_output.logits[alt_labels != -100]
|
140 |
+
/ self.loss_config.kl_temperature,
|
141 |
+
dim=-1,
|
142 |
+
),
|
143 |
+
reduction="batchmean",
|
144 |
+
)
|
145 |
+
return {"loss": kl_loss}
|
146 |
+
|
147 |
+
def forward(
|
148 |
+
self,
|
149 |
+
input_ids: torch.Tensor,
|
150 |
+
audio_values: Optional[torch.FloatTensor] = None,
|
151 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
152 |
+
labels: Optional[torch.Tensor] = None,
|
153 |
+
attention_mask: Optional[torch.Tensor] = None,
|
154 |
+
audio_token_start_idx: Optional[torch.Tensor] = None,
|
155 |
+
audio_len: Optional[torch.Tensor] = None,
|
156 |
+
audio_token_len: Optional[torch.Tensor] = None,
|
157 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
158 |
+
# the alt_* fields are needed for KL divergence loss
|
159 |
+
alt_input_ids: Optional[torch.Tensor] = None,
|
160 |
+
alt_attention_mask: Optional[torch.Tensor] = None,
|
161 |
+
alt_labels: Optional[torch.Tensor] = None,
|
162 |
+
**kwargs,
|
163 |
+
) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
|
164 |
+
"""
|
165 |
+
Forward pass for the Ultravox model.
|
166 |
+
|
167 |
+
`input_ids` are the tokenized text input. They are embedded by the language model as usual.
|
168 |
+
`audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
|
169 |
+
projected to the language model's embedding space using a few linear layers.
|
170 |
+
The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
|
171 |
+
of the audio embeddings in the merged embeddings.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
input_ids: The tokenized text input.
|
175 |
+
audio_values: The processed audio values.
|
176 |
+
inputs_embeds: The embeddings for the input tokens.
|
177 |
+
labels: The tokenized text labels.
|
178 |
+
attention_mask: The attention mask for the input.
|
179 |
+
position_ids: The position ids for the input.
|
180 |
+
past_key_values: The past key value cache for the language model attention layers.
|
181 |
+
**kwargs: Additional keyword arguments. Passed directly to the language model.
|
182 |
+
"""
|
183 |
+
if inputs_embeds is None:
|
184 |
+
# B x T -> B x T x D
|
185 |
+
inputs_embeds = self.get_input_embeddings().forward(input_ids)
|
186 |
+
|
187 |
+
if audio_values is not None:
|
188 |
+
assert (
|
189 |
+
audio_token_start_idx is not None and audio_token_len is not None
|
190 |
+
), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
|
191 |
+
assert (
|
192 |
+
len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
|
193 |
+
), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."
|
194 |
+
|
195 |
+
# B x A/3200 x D
|
196 |
+
audio_tower_output = self.audio_tower.forward(
|
197 |
+
audio_values.to(self.audio_tower.dtype),
|
198 |
+
audio_len=audio_len,
|
199 |
+
).last_hidden_state
|
200 |
+
audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
|
201 |
+
|
202 |
+
audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
|
203 |
+
|
204 |
+
# combine audio and text embeddings
|
205 |
+
for i, (audio, start, length) in enumerate(
|
206 |
+
zip(audio_embeds, audio_token_start_idx, audio_token_len)
|
207 |
+
):
|
208 |
+
length = min(length, audio.shape[0])
|
209 |
+
inputs_embeds[i, start : start + length] = audio[:length]
|
210 |
+
|
211 |
+
lm_output = self.language_model.forward(
|
212 |
+
inputs_embeds=inputs_embeds,
|
213 |
+
labels=labels,
|
214 |
+
attention_mask=attention_mask,
|
215 |
+
past_key_values=past_key_values,
|
216 |
+
**kwargs,
|
217 |
+
)
|
218 |
+
if self.training:
|
219 |
+
if self.loss_config.loss_function == LossFunction.CrossEntropy:
|
220 |
+
return lm_output
|
221 |
+
elif self.loss_config.loss_function == LossFunction.KL_Divergence:
|
222 |
+
return self._compute_kl_loss(
|
223 |
+
lm_output=lm_output,
|
224 |
+
labels=labels,
|
225 |
+
past_key_values=past_key_values,
|
226 |
+
alt_input_ids=alt_input_ids,
|
227 |
+
alt_attention_mask=alt_attention_mask,
|
228 |
+
alt_labels=alt_labels,
|
229 |
+
**kwargs,
|
230 |
+
)
|
231 |
+
else:
|
232 |
+
raise ValueError(
|
233 |
+
f"Unsupported loss function: {self.loss_config.loss_function}"
|
234 |
+
)
|
235 |
+
else:
|
236 |
+
return lm_output
|
237 |
+
|
238 |
+
def prepare_inputs_for_generation(
|
239 |
+
self,
|
240 |
+
input_ids: torch.Tensor,
|
241 |
+
audio_values: Optional[torch.FloatTensor] = None,
|
242 |
+
audio_token_start_idx: Optional[torch.Tensor] = None,
|
243 |
+
audio_token_len: Optional[torch.Tensor] = None,
|
244 |
+
audio_len: Optional[torch.Tensor] = None,
|
245 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
246 |
+
attention_mask: Optional[torch.Tensor] = None,
|
247 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
248 |
+
cache_position: Optional[torch.Tensor] = None,
|
249 |
+
**kwargs,
|
250 |
+
) -> Dict[str, Any]:
|
251 |
+
model_input = self.language_model.prepare_inputs_for_generation(
|
252 |
+
input_ids=input_ids,
|
253 |
+
past_key_values=past_key_values,
|
254 |
+
attention_mask=attention_mask,
|
255 |
+
inputs_embeds=inputs_embeds,
|
256 |
+
cache_position=cache_position,
|
257 |
+
**kwargs,
|
258 |
+
)
|
259 |
+
|
260 |
+
# include audio information in model_input only when it is needed during prefilling
|
261 |
+
# audio_token_start_idx should always be relative to the current cache position
|
262 |
+
prefill_start_idx = 0 if cache_position is None else cache_position[0]
|
263 |
+
if (
|
264 |
+
audio_values is not None
|
265 |
+
and audio_token_start_idx is not None
|
266 |
+
and prefill_start_idx <= torch.max(audio_token_start_idx)
|
267 |
+
):
|
268 |
+
model_input["audio_values"] = audio_values
|
269 |
+
model_input["audio_token_start_idx"] = (
|
270 |
+
audio_token_start_idx - prefill_start_idx
|
271 |
+
)
|
272 |
+
model_input["audio_token_len"] = audio_token_len
|
273 |
+
model_input["audio_len"] = audio_len
|
274 |
+
|
275 |
+
return model_input
|
276 |
+
|
277 |
+
@classmethod
|
278 |
+
def _create_multi_modal_projector(
|
279 |
+
cls, config: UltravoxConfig
|
280 |
+
) -> "UltravoxProjector":
|
281 |
+
projector = UltravoxProjector(config)
|
282 |
+
projector.to(config.torch_dtype)
|
283 |
+
return projector
|
284 |
+
|
285 |
+
@classmethod
|
286 |
+
def _create_audio_tower(
|
287 |
+
cls, config: UltravoxConfig
|
288 |
+
) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
|
289 |
+
if config.audio_model_id is not None:
|
290 |
+
if "whisper" in config.audio_model_id.lower():
|
291 |
+
audio_tower = ModifiedWhisperEncoder.from_pretrained(
|
292 |
+
config.audio_model_id, torch_dtype=config.torch_dtype
|
293 |
+
)
|
294 |
+
audio_tower.init_latency_mask(
|
295 |
+
config.audio_latency_block_size, dtype=config.torch_dtype
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
assert config.audio_latency_block_size in (
|
299 |
+
None,
|
300 |
+
0,
|
301 |
+
), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
|
302 |
+
audio_tower = transformers.AutoModel.from_pretrained(
|
303 |
+
config.audio_model_id, torch_dtype=config.torch_dtype
|
304 |
+
)
|
305 |
+
else:
|
306 |
+
if "whisper" in config.audio_config._name_or_path.lower():
|
307 |
+
audio_tower = ModifiedWhisperEncoder(config.audio_config)
|
308 |
+
audio_tower.init_latency_mask(
|
309 |
+
config.audio_latency_block_size, dtype=config.torch_dtype
|
310 |
+
)
|
311 |
+
else:
|
312 |
+
assert config.audio_latency_block_size in (
|
313 |
+
None,
|
314 |
+
0,
|
315 |
+
), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
|
316 |
+
with transformers.modeling_utils.no_init_weights():
|
317 |
+
# we only ever use from_config if the weights are retrained, hence initializing is not
|
318 |
+
# required. This makes the model quite creation faster since init on CPU is quite slow.
|
319 |
+
audio_tower = transformers.AutoModel.from_config(
|
320 |
+
config.audio_config
|
321 |
+
)
|
322 |
+
|
323 |
+
if isinstance(
|
324 |
+
audio_tower,
|
325 |
+
(transformers.Wav2Vec2BertModel, transformers.WhisperModel),
|
326 |
+
):
|
327 |
+
# For these models we only need the encoder part
|
328 |
+
# Wav2Vec2BertModel -> Wav2Vec2BertEncoder
|
329 |
+
# WhisperModel -> WhisperEncoder
|
330 |
+
audio_tower = audio_tower.encoder
|
331 |
+
|
332 |
+
audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
|
333 |
+
return audio_tower
|
334 |
+
|
335 |
+
@classmethod
|
336 |
+
def _create_language_model(
|
337 |
+
cls, config: UltravoxConfig
|
338 |
+
) -> transformers.LlamaForCausalLM:
|
339 |
+
if config.text_model_id is not None:
|
340 |
+
language_model = transformers.AutoModelForCausalLM.from_pretrained(
|
341 |
+
config.text_model_id,
|
342 |
+
attn_implementation=config._attn_implementation,
|
343 |
+
torch_dtype=config.torch_dtype,
|
344 |
+
)
|
345 |
+
else:
|
346 |
+
with transformers.modeling_utils.no_init_weights():
|
347 |
+
# we only ever use from_config if the weights are retrained, hence initializing is not
|
348 |
+
# required. This makes the model quite creation faster since init on CPU is quite slow.
|
349 |
+
language_model = transformers.AutoModelForCausalLM.from_config(
|
350 |
+
config.text_config,
|
351 |
+
attn_implementation=config._attn_implementation,
|
352 |
+
torch_dtype=config.torch_dtype,
|
353 |
+
)
|
354 |
+
|
355 |
+
language_model = apply_lora(language_model, config.text_model_lora_config)
|
356 |
+
return language_model
|
357 |
+
|
358 |
+
def merge_and_unload(self):
|
359 |
+
if isinstance(self.language_model, peft.PeftModel):
|
360 |
+
self.language_model = self.language_model.merge_and_unload()
|
361 |
+
# no need to download base language model weights anymore, so we can remove the id
|
362 |
+
self.config.text_model_id = None
|
363 |
+
self.keep_params.update(
|
364 |
+
set(
|
365 |
+
[
|
366 |
+
f"language_model.{name}"
|
367 |
+
for name, _ in self.language_model.named_parameters()
|
368 |
+
]
|
369 |
+
)
|
370 |
+
)
|
371 |
+
|
372 |
+
if isinstance(self.audio_tower, peft.PeftModel):
|
373 |
+
self.audio_tower = self.audio_tower.merge_and_unload()
|
374 |
+
# no need to download base audio model weights anymore, so we can remove the id
|
375 |
+
self.config.audio_model_id = None
|
376 |
+
self.keep_params.update(
|
377 |
+
set(
|
378 |
+
[
|
379 |
+
f"audio_tower.{name}"
|
380 |
+
for name, _ in self.audio_tower.named_parameters()
|
381 |
+
]
|
382 |
+
)
|
383 |
+
)
|
384 |
+
|
385 |
+
for param in ["text_model_lora_config", "audio_model_lora_config"]:
|
386 |
+
if hasattr(self.config, param):
|
387 |
+
delattr(self.config, param)
|
388 |
+
|
389 |
+
def push_to_hub(self, *args, **kwargs):
|
390 |
+
self.merge_and_unload()
|
391 |
+
return super().push_to_hub(*args, **kwargs)
|
392 |
+
|
393 |
+
def diff_state_dict(
|
394 |
+
self, state_dict: Optional[Dict[str, Any]] = None
|
395 |
+
) -> Dict[str, Any]:
|
396 |
+
if state_dict is None:
|
397 |
+
state_dict = super().state_dict()
|
398 |
+
|
399 |
+
named_params = dict(self.named_parameters())
|
400 |
+
|
401 |
+
state_dict = {
|
402 |
+
k: v
|
403 |
+
for k, v in state_dict.items()
|
404 |
+
if k in self.keep_params
|
405 |
+
or (k in named_params and named_params[k].requires_grad)
|
406 |
+
}
|
407 |
+
|
408 |
+
return state_dict
|
409 |
+
|
410 |
+
def save_pretrained(
|
411 |
+
self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs
|
412 |
+
):
|
413 |
+
state_dict = self.diff_state_dict(state_dict)
|
414 |
+
|
415 |
+
super().save_pretrained(*args, state_dict=state_dict, **kwargs)
|
416 |
+
|
417 |
+
def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs):
|
418 |
+
self.keep_params.update(set(state_dict.keys()))
|
419 |
+
|
420 |
+
def print_trainable_parameters(self):
|
421 |
+
"""
|
422 |
+
Prints the number of trainable parameters in the model (reuses Peft model's method)
|
423 |
+
"""
|
424 |
+
count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
|
425 |
+
|
426 |
+
trainable_params, all_param = count_params(self)
|
427 |
+
|
428 |
+
logging.info(
|
429 |
+
f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
|
430 |
+
f" || trainable%: {100 * trainable_params / all_param:.1f}%"
|
431 |
+
)
|
432 |
+
|
433 |
+
lm_trainable_params, lm_all_params = count_params(self.language_model)
|
434 |
+
audio_trainable_params, audio_all_params = count_params(self.audio_tower)
|
435 |
+
|
436 |
+
projector_trainable_params = (
|
437 |
+
trainable_params - lm_trainable_params - audio_trainable_params
|
438 |
+
)
|
439 |
+
projector_all_params = all_param - lm_all_params - audio_all_params
|
440 |
+
|
441 |
+
logging.info(
|
442 |
+
f"Trainable%: "
|
443 |
+
f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
|
444 |
+
f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
|
445 |
+
f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
|
446 |
+
)
|
447 |
+
|
448 |
+
|
449 |
+
# TODO: refactor common parts to a shared module
|
450 |
+
def is_cache_empty(
|
451 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]]
|
452 |
+
) -> bool:
|
453 |
+
"""
|
454 |
+
Check if the cache is empty.
|
455 |
+
"""
|
456 |
+
if past_key_values is None:
|
457 |
+
return True
|
458 |
+
if isinstance(past_key_values, tuple):
|
459 |
+
return all(len(c) == 0 for c in past_key_values)
|
460 |
+
return past_key_values.get_seq_length() == 0
|
461 |
+
|
462 |
+
|
463 |
+
def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
|
464 |
+
"""
|
465 |
+
Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
|
466 |
+
"""
|
467 |
+
unfreeze_layers = lora_config.pop("unfreeze_layers", None)
|
468 |
+
lora_config = peft.LoraConfig(**lora_config or {})
|
469 |
+
|
470 |
+
if lora_config.r == 0:
|
471 |
+
# freeze the model entirely, except for the specified layers
|
472 |
+
for name, param in model.named_parameters():
|
473 |
+
if not unfreeze_layers or not any(
|
474 |
+
re.match(layer, name) for layer in unfreeze_layers
|
475 |
+
):
|
476 |
+
param.requires_grad = False
|
477 |
+
else:
|
478 |
+
logging.info(f"Unfreezing layer: {name} with #{param.numel()} params")
|
479 |
+
else:
|
480 |
+
model = peft.get_peft_model(model, lora_config)
|
481 |
+
|
482 |
+
return model
|
483 |
+
|
484 |
+
|
485 |
+
class StackAudioFrames(nn.Module):
|
486 |
+
"""
|
487 |
+
Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.
|
488 |
+
|
489 |
+
The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
|
490 |
+
NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
|
491 |
+
we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
|
492 |
+
In most cases this extra padding will get removed in the model's forward function so it has no effect.
|
493 |
+
"""
|
494 |
+
|
495 |
+
def __init__(self, stack_factor: int = 8):
|
496 |
+
super().__init__()
|
497 |
+
self.stack_factor = stack_factor
|
498 |
+
|
499 |
+
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
|
500 |
+
B, T, C = audio_embeds.shape
|
501 |
+
T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
|
502 |
+
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
|
503 |
+
B, T, C = audio_embeds.shape
|
504 |
+
audio_embeds = audio_embeds.view(
|
505 |
+
B, T // self.stack_factor, C * self.stack_factor
|
506 |
+
)
|
507 |
+
return audio_embeds
|
508 |
+
|
509 |
+
|
510 |
+
class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
|
511 |
+
def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
|
512 |
+
super().__init__(hidden_size=hidden_size, eps=eps)
|
513 |
+
self.weight.data.fill_(init)
|
514 |
+
|
515 |
+
|
516 |
+
class SwiGLU(nn.Module):
|
517 |
+
def forward(self, x):
|
518 |
+
x, gate = x.chunk(2, dim=-1)
|
519 |
+
return F.silu(gate) * x
|
520 |
+
|
521 |
+
|
522 |
+
class UltravoxProjector(nn.Module):
|
523 |
+
def __init__(self, config: UltravoxConfig):
|
524 |
+
super().__init__()
|
525 |
+
self.hidden_dim = config.hidden_size
|
526 |
+
self._pad_and_stack = StackAudioFrames(config.stack_factor)
|
527 |
+
dim_in = config.audio_config.hidden_size * config.stack_factor
|
528 |
+
self.ln_pre = RMSNorm(dim_in, init=config.norm_init)
|
529 |
+
self.linear_1 = nn.Linear(dim_in, self.hidden_dim, bias=False)
|
530 |
+
dim_mid = self.hidden_dim
|
531 |
+
self.act = transformers.activations.get_activation(config.projector_act)
|
532 |
+
dim_mid = dim_mid // 2 if config.projector_act == "swiglu" else dim_mid
|
533 |
+
dim_out = config.text_config.hidden_size
|
534 |
+
self.linear_2 = nn.Linear(dim_mid, dim_out, bias=False)
|
535 |
+
|
536 |
+
# Ultravox v0.4.1 and below uses layer_norm after the second linear layer,
|
537 |
+
# while v0.5.0 and above uses layer_norm after the first linear layer.
|
538 |
+
if config.projector_ln_mid:
|
539 |
+
self.ln_mid: nn.Module = RMSNorm(dim_mid, init=config.norm_init)
|
540 |
+
self.ln_post: nn.Module = nn.Identity()
|
541 |
+
else:
|
542 |
+
self.ln_mid = nn.Identity()
|
543 |
+
self.ln_post = RMSNorm(dim_out, init=config.norm_init)
|
544 |
+
|
545 |
+
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
|
546 |
+
audio_features = self._pad_and_stack(audio_features)
|
547 |
+
audio_features = self.ln_pre(audio_features)
|
548 |
+
hidden_states = self.linear_1(audio_features)
|
549 |
+
hidden_states = self.act(hidden_states)
|
550 |
+
hidden_states = self.ln_mid(hidden_states)
|
551 |
+
hidden_states = self.linear_2(hidden_states)
|
552 |
+
hidden_states = self.ln_post(hidden_states)
|
553 |
+
return hidden_states
|
554 |
+
|
555 |
+
|
556 |
+
class ModifiedWhisperEncoder(
|
557 |
+
whisper.WhisperEncoder, transformers.modeling_utils.ModuleUtilsMixin
|
558 |
+
):
|
559 |
+
"""
|
560 |
+
Encoder portion of OpenAI's Whisper model.
|
561 |
+
|
562 |
+
This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
|
563 |
+
1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
|
564 |
+
2. allow less than 30 second of audio padding to be passed in:
|
565 |
+
- relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
|
566 |
+
- embed_pos is now sliced to match the length of `inputs_embeds`
|
567 |
+
|
568 |
+
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
|
569 |
+
"""
|
570 |
+
|
571 |
+
base_model_prefix = "model.encoder"
|
572 |
+
_no_split_modules = ["WhisperEncoderLayer"]
|
573 |
+
|
574 |
+
def __init__(self, config: transformers.WhisperConfig):
|
575 |
+
super().__init__(config)
|
576 |
+
self.config.is_decoder = False
|
577 |
+
|
578 |
+
def init_latency_mask(self, audio_latency_block_size: int, dtype: torch.dtype):
|
579 |
+
if audio_latency_block_size is None:
|
580 |
+
self.audio_streaming_mask = None
|
581 |
+
return
|
582 |
+
|
583 |
+
# maximum sequence length
|
584 |
+
max_seqlen = (
|
585 |
+
self.config.max_source_positions
|
586 |
+
* self.conv1.stride[0]
|
587 |
+
* self.conv2.stride[0]
|
588 |
+
)
|
589 |
+
assert (
|
590 |
+
max_seqlen > 0
|
591 |
+
), f"maximum sequence length must be positive, got {max_seqlen}"
|
592 |
+
assert (
|
593 |
+
max_seqlen % audio_latency_block_size == 0
|
594 |
+
), f"audio_latency_block_size {audio_latency_block_size} must divide {max_seqlen} evenly."
|
595 |
+
# Given the block size, we calculate number of blocks.
|
596 |
+
audio_latency_nblocks = max_seqlen // audio_latency_block_size
|
597 |
+
audio_streaming_mask = (
|
598 |
+
torch.tril(
|
599 |
+
torch.ones(audio_latency_nblocks, audio_latency_nblocks),
|
600 |
+
diagonal=0,
|
601 |
+
)
|
602 |
+
.repeat_interleave(audio_latency_block_size, dim=0)
|
603 |
+
.repeat_interleave(audio_latency_block_size, dim=1)
|
604 |
+
)
|
605 |
+
audio_streaming_mask = (1.0 - audio_streaming_mask) * torch.finfo(dtype).min
|
606 |
+
audio_streaming_mask = audio_streaming_mask[None, None, :, :]
|
607 |
+
self.register_buffer(
|
608 |
+
"audio_streaming_mask", audio_streaming_mask, persistent=False
|
609 |
+
)
|
610 |
+
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
input_features,
|
614 |
+
audio_len=None,
|
615 |
+
head_mask=None,
|
616 |
+
output_attentions=None,
|
617 |
+
output_hidden_states=None,
|
618 |
+
return_dict=None,
|
619 |
+
):
|
620 |
+
expected_seq_length = (
|
621 |
+
self.config.max_source_positions
|
622 |
+
* self.conv1.stride[0]
|
623 |
+
* self.conv2.stride[0]
|
624 |
+
)
|
625 |
+
if input_features.shape[-1] > expected_seq_length:
|
626 |
+
raise ValueError(
|
627 |
+
f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
|
628 |
+
)
|
629 |
+
|
630 |
+
output_attentions = (
|
631 |
+
output_attentions
|
632 |
+
if output_attentions is not None
|
633 |
+
else self.config.output_attentions
|
634 |
+
)
|
635 |
+
output_hidden_states = (
|
636 |
+
output_hidden_states
|
637 |
+
if output_hidden_states is not None
|
638 |
+
else self.config.output_hidden_states
|
639 |
+
)
|
640 |
+
return_dict = (
|
641 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
642 |
+
)
|
643 |
+
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
644 |
+
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
645 |
+
|
646 |
+
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
647 |
+
embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
|
648 |
+
|
649 |
+
hidden_states = inputs_embeds + embed_pos
|
650 |
+
hidden_states = nn.functional.dropout(
|
651 |
+
hidden_states, p=self.dropout, training=self.training
|
652 |
+
)
|
653 |
+
|
654 |
+
encoder_states = () if output_hidden_states else None
|
655 |
+
all_attentions = () if output_attentions else None
|
656 |
+
|
657 |
+
# Create attention mask based on audio lengths to mask out padding tokens
|
658 |
+
# For each sample in batch:
|
659 |
+
# - Convert raw audio length to feature length after convolutions
|
660 |
+
# - Create boolean mask that is True for valid positions and False for padding
|
661 |
+
# - Convert to extended attention mask format expected by transformer layers
|
662 |
+
# (1.0 for positions to attend to, large negative for positions to ignore)
|
663 |
+
# This masking ensures consistent behavior between training and inference
|
664 |
+
# by preventing the model from attending to padding tokens in both cases
|
665 |
+
attention_mask = None
|
666 |
+
if audio_len != None:
|
667 |
+
audio_feature_len = self._get_feat_extract_output_lengths(audio_len)
|
668 |
+
max_seq_len = hidden_states.shape[1]
|
669 |
+
attention_mask = torch.arange(max_seq_len, device=hidden_states.device)[
|
670 |
+
None, :
|
671 |
+
].lt(audio_feature_len.view(-1, 1))
|
672 |
+
attention_mask = self.get_extended_attention_mask(
|
673 |
+
attention_mask,
|
674 |
+
None,
|
675 |
+
device=hidden_states.device,
|
676 |
+
dtype=hidden_states.dtype,
|
677 |
+
)
|
678 |
+
|
679 |
+
if self.audio_streaming_mask is not None:
|
680 |
+
seqlen = hidden_states.size(-2)
|
681 |
+
if attention_mask is not None:
|
682 |
+
attention_mask = torch.minimum(
|
683 |
+
self.audio_streaming_mask[:, :, :seqlen, :seqlen], attention_mask
|
684 |
+
) # merge
|
685 |
+
else:
|
686 |
+
attention_mask = self.audio_streaming_mask[:, :, :seqlen, :seqlen]
|
687 |
+
attention_mask = attention_mask.to(hidden_states.dtype)
|
688 |
+
|
689 |
+
# check if head_mask has a correct number of layers specified if desired
|
690 |
+
if head_mask is not None:
|
691 |
+
assert head_mask.size()[0] == (
|
692 |
+
len(self.layers)
|
693 |
+
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
694 |
+
|
695 |
+
for idx, encoder_layer in enumerate(self.layers):
|
696 |
+
if output_hidden_states:
|
697 |
+
encoder_states = encoder_states + (hidden_states,)
|
698 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
699 |
+
to_drop = False
|
700 |
+
if self.training:
|
701 |
+
dropout_probability = torch.rand([])
|
702 |
+
if dropout_probability < self.layerdrop: # skip the layer
|
703 |
+
to_drop = True
|
704 |
+
|
705 |
+
if to_drop:
|
706 |
+
layer_outputs = (None, None)
|
707 |
+
else:
|
708 |
+
if self.gradient_checkpointing and self.training:
|
709 |
+
layer_outputs = self._gradient_checkpointing_func(
|
710 |
+
encoder_layer.__call__,
|
711 |
+
hidden_states,
|
712 |
+
attention_mask,
|
713 |
+
(head_mask[idx] if head_mask is not None else None),
|
714 |
+
output_attentions,
|
715 |
+
)
|
716 |
+
else:
|
717 |
+
layer_outputs = encoder_layer(
|
718 |
+
hidden_states,
|
719 |
+
attention_mask,
|
720 |
+
layer_head_mask=(
|
721 |
+
head_mask[idx] if head_mask is not None else None
|
722 |
+
),
|
723 |
+
output_attentions=output_attentions,
|
724 |
+
)
|
725 |
+
|
726 |
+
hidden_states = layer_outputs[0]
|
727 |
+
|
728 |
+
if output_attentions:
|
729 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
730 |
+
|
731 |
+
hidden_states = self.layer_norm(hidden_states)
|
732 |
+
if output_hidden_states:
|
733 |
+
encoder_states = encoder_states + (hidden_states,)
|
734 |
+
|
735 |
+
if not return_dict:
|
736 |
+
return tuple(
|
737 |
+
v
|
738 |
+
for v in [hidden_states, encoder_states, all_attentions]
|
739 |
+
if v is not None
|
740 |
+
)
|
741 |
+
return transformers.modeling_outputs.BaseModelOutput(
|
742 |
+
last_hidden_state=hidden_states,
|
743 |
+
hidden_states=encoder_states,
|
744 |
+
attentions=all_attentions,
|
745 |
+
)
|
746 |
+
|
747 |
+
|
748 |
+
UltravoxConfig.register_for_auto_class()
|
749 |
+
UltravoxModel.register_for_auto_class()
|
750 |
+
|
751 |
+
transformers.AutoConfig.register("ultravox", UltravoxConfig)
|
752 |
+
transformers.AutoModel.register(UltravoxConfig, UltravoxModel)
|
753 |
+
|
754 |
+
transformers.activations.ACT2FN["swiglu"] = SwiGLU
|
checkpoint-14400/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-3600/config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"UltravoxModel"
|
4 |
+
],
|
5 |
+
"audio_latency_block_size": null,
|
6 |
+
"audio_model_id": "openai/whisper-large-v3-turbo",
|
7 |
+
"audio_model_lora_config": {
|
8 |
+
"lora_alpha": 8,
|
9 |
+
"r": 0,
|
10 |
+
"target_modules": [
|
11 |
+
"k_proj",
|
12 |
+
"q_proj",
|
13 |
+
"linear_k",
|
14 |
+
"linear_q"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
"auto_map": {
|
18 |
+
"AutoConfig": "ultravox_config.UltravoxConfig",
|
19 |
+
"AutoModel": "ultravox_model.UltravoxModel"
|
20 |
+
},
|
21 |
+
"hidden_size": 4096,
|
22 |
+
"ignore_index": -100,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"model_type": "ultravox",
|
25 |
+
"norm_init": 0.4,
|
26 |
+
"pad_token_id": 2,
|
27 |
+
"projector_act": "swiglu",
|
28 |
+
"projector_ln_mid": false,
|
29 |
+
"stack_factor": 8,
|
30 |
+
"text_model_id": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
31 |
+
"text_model_lora_config": {
|
32 |
+
"lora_alpha": 8,
|
33 |
+
"r": 0,
|
34 |
+
"target_modules": [
|
35 |
+
"k_proj",
|
36 |
+
"q_proj",
|
37 |
+
"linear_k",
|
38 |
+
"linear_q"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
"torch_dtype": "bfloat16",
|
42 |
+
"transformers_version": "4.47.0",
|
43 |
+
"vocab_size": 49152
|
44 |
+
}
|
checkpoint-3600/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 2,
|
6 |
+
"transformers_version": "4.47.0"
|
7 |
+
}
|
checkpoint-3600/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-3600/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1080c1b944294199dcd5962182193892ea86e01ffb3ce2aa01c78826bf009d98
|
3 |
+
size 92299736
|
checkpoint-3600/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7444791357081ea9975d646a7093e47e4505a05bbeaca1d147d88d865809af4c
|
3 |
+
size 184602962
|
checkpoint-3600/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb9a3b64cb4cc2afb67461c1d3860326ef6cddab5e1dd39123b1af5d51fc5f9e
|
3 |
+
size 14244
|
checkpoint-3600/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04d44c72cd3a348b42894fd1f0aa67e10dd8fbbcc70558ee71674069905052af
|
3 |
+
size 1064
|
checkpoint-3600/special_tokens_map.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "<|im_start|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<|im_end|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"pad_token": "<|im_end|>",
|
21 |
+
"unk_token": {
|
22 |
+
"content": "<|endoftext|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
}
|
28 |
+
}
|
checkpoint-3600/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-3600/tokenizer_config.json
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<repo_name>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "<reponame>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"5": {
|
45 |
+
"content": "<file_sep>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"6": {
|
53 |
+
"content": "<filename>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"7": {
|
61 |
+
"content": "<gh_stars>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"8": {
|
69 |
+
"content": "<issue_start>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"9": {
|
77 |
+
"content": "<issue_comment>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"10": {
|
85 |
+
"content": "<issue_closed>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"11": {
|
93 |
+
"content": "<jupyter_start>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"12": {
|
101 |
+
"content": "<jupyter_text>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"13": {
|
109 |
+
"content": "<jupyter_code>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"14": {
|
117 |
+
"content": "<jupyter_output>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"15": {
|
125 |
+
"content": "<jupyter_script>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"16": {
|
133 |
+
"content": "<empty_output>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
}
|
140 |
+
},
|
141 |
+
"additional_special_tokens": [
|
142 |
+
"<|im_start|>",
|
143 |
+
"<|im_end|>"
|
144 |
+
],
|
145 |
+
"bos_token": "<|im_start|>",
|
146 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
147 |
+
"clean_up_tokenization_spaces": false,
|
148 |
+
"eos_token": "<|im_end|>",
|
149 |
+
"extra_special_tokens": {},
|
150 |
+
"model_max_length": 8192,
|
151 |
+
"pad_token": "<|im_end|>",
|
152 |
+
"tokenizer_class": "GPT2Tokenizer",
|
153 |
+
"unk_token": "<|endoftext|>",
|
154 |
+
"vocab_size": 49152
|
155 |
+
}
|
checkpoint-3600/trainer_state.json
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.029961549345007242,
|
5 |
+
"eval_steps": 1000,
|
6 |
+
"global_step": 3600,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 8.322652595835345e-06,
|
13 |
+
"grad_norm": 14.9375,
|
14 |
+
"learning_rate": 2e-06,
|
15 |
+
"loss": 0.6484,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0008322652595835345,
|
20 |
+
"grad_norm": 0.3671875,
|
21 |
+
"learning_rate": 0.0002,
|
22 |
+
"loss": 0.4345,
|
23 |
+
"step": 100
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.001664530519167069,
|
27 |
+
"grad_norm": 0.1689453125,
|
28 |
+
"learning_rate": 0.0004,
|
29 |
+
"loss": 0.2537,
|
30 |
+
"step": 200
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0024967957787506035,
|
34 |
+
"grad_norm": 0.55859375,
|
35 |
+
"learning_rate": 0.0006,
|
36 |
+
"loss": 0.2344,
|
37 |
+
"step": 300
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.003329061038334138,
|
41 |
+
"grad_norm": 0.154296875,
|
42 |
+
"learning_rate": 0.0008,
|
43 |
+
"loss": 0.222,
|
44 |
+
"step": 400
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.004161326297917672,
|
48 |
+
"grad_norm": 0.126953125,
|
49 |
+
"learning_rate": 0.001,
|
50 |
+
"loss": 0.2142,
|
51 |
+
"step": 500
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.004993591557501207,
|
55 |
+
"grad_norm": 0.12353515625,
|
56 |
+
"learning_rate": 0.0012,
|
57 |
+
"loss": 0.2011,
|
58 |
+
"step": 600
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.005825856817084741,
|
62 |
+
"grad_norm": 0.10693359375,
|
63 |
+
"learning_rate": 0.0014,
|
64 |
+
"loss": 0.1897,
|
65 |
+
"step": 700
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.006658122076668276,
|
69 |
+
"grad_norm": 0.10595703125,
|
70 |
+
"learning_rate": 0.0016,
|
71 |
+
"loss": 0.1775,
|
72 |
+
"step": 800
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.0074903873362518105,
|
76 |
+
"grad_norm": 0.0859375,
|
77 |
+
"learning_rate": 0.0018000000000000002,
|
78 |
+
"loss": 0.1615,
|
79 |
+
"step": 900
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.008322652595835344,
|
83 |
+
"grad_norm": 0.083984375,
|
84 |
+
"learning_rate": 0.002,
|
85 |
+
"loss": 0.1444,
|
86 |
+
"step": 1000
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.008322652595835344,
|
90 |
+
"eval_peoplespeech-clean-transcription_loss": 2.2110702991485596,
|
91 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
92 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.5405,
|
93 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.708,
|
94 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.839,
|
95 |
+
"step": 1000
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.009154917855418878,
|
99 |
+
"grad_norm": 0.0771484375,
|
100 |
+
"learning_rate": 0.001999725185109816,
|
101 |
+
"loss": 0.1323,
|
102 |
+
"step": 1100
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 0.009987183115002414,
|
106 |
+
"grad_norm": 0.083984375,
|
107 |
+
"learning_rate": 0.0019989008914857113,
|
108 |
+
"loss": 0.1242,
|
109 |
+
"step": 1200
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.010819448374585948,
|
113 |
+
"grad_norm": 0.07861328125,
|
114 |
+
"learning_rate": 0.00199752757218401,
|
115 |
+
"loss": 0.1162,
|
116 |
+
"step": 1300
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.011651713634169482,
|
120 |
+
"grad_norm": 0.07275390625,
|
121 |
+
"learning_rate": 0.001995605982021898,
|
122 |
+
"loss": 0.1128,
|
123 |
+
"step": 1400
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.012483978893753018,
|
127 |
+
"grad_norm": 0.07666015625,
|
128 |
+
"learning_rate": 0.0019931371771625545,
|
129 |
+
"loss": 0.1094,
|
130 |
+
"step": 1500
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.013316244153336551,
|
134 |
+
"grad_norm": 0.06201171875,
|
135 |
+
"learning_rate": 0.001990122514534651,
|
136 |
+
"loss": 0.1052,
|
137 |
+
"step": 1600
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.014148509412920085,
|
141 |
+
"grad_norm": 0.058837890625,
|
142 |
+
"learning_rate": 0.0019865636510865464,
|
143 |
+
"loss": 0.1022,
|
144 |
+
"step": 1700
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.014980774672503621,
|
148 |
+
"grad_norm": 0.0625,
|
149 |
+
"learning_rate": 0.001982462542875576,
|
150 |
+
"loss": 0.1011,
|
151 |
+
"step": 1800
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.015813039932087155,
|
155 |
+
"grad_norm": 0.06787109375,
|
156 |
+
"learning_rate": 0.001977821443992945,
|
157 |
+
"loss": 0.0983,
|
158 |
+
"step": 1900
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.01664530519167069,
|
162 |
+
"grad_norm": 0.0537109375,
|
163 |
+
"learning_rate": 0.001972642905324813,
|
164 |
+
"loss": 0.0975,
|
165 |
+
"step": 2000
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.01664530519167069,
|
169 |
+
"eval_peoplespeech-clean-transcription_loss": 1.6914767026901245,
|
170 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
171 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.5301,
|
172 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.716,
|
173 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.839,
|
174 |
+
"step": 2000
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 0.017477570451254223,
|
178 |
+
"grad_norm": 0.05859375,
|
179 |
+
"learning_rate": 0.0019669297731502505,
|
180 |
+
"loss": 0.0947,
|
181 |
+
"step": 2100
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.018309835710837757,
|
185 |
+
"grad_norm": 0.062255859375,
|
186 |
+
"learning_rate": 0.00196068518757684,
|
187 |
+
"loss": 0.0935,
|
188 |
+
"step": 2200
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.019142100970421294,
|
192 |
+
"grad_norm": 0.059326171875,
|
193 |
+
"learning_rate": 0.001953912580814779,
|
194 |
+
"loss": 0.0911,
|
195 |
+
"step": 2300
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.019974366230004828,
|
199 |
+
"grad_norm": 0.060302734375,
|
200 |
+
"learning_rate": 0.0019466156752904343,
|
201 |
+
"loss": 0.0904,
|
202 |
+
"step": 2400
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"epoch": 0.020806631489588362,
|
206 |
+
"grad_norm": 0.0615234375,
|
207 |
+
"learning_rate": 0.0019387984816003866,
|
208 |
+
"loss": 0.0882,
|
209 |
+
"step": 2500
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.021638896749171896,
|
213 |
+
"grad_norm": 0.056884765625,
|
214 |
+
"learning_rate": 0.0019304652963070869,
|
215 |
+
"loss": 0.0874,
|
216 |
+
"step": 2600
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 0.02247116200875543,
|
220 |
+
"grad_norm": 0.049072265625,
|
221 |
+
"learning_rate": 0.0019216206995773372,
|
222 |
+
"loss": 0.0871,
|
223 |
+
"step": 2700
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"epoch": 0.023303427268338964,
|
227 |
+
"grad_norm": 0.053955078125,
|
228 |
+
"learning_rate": 0.0019122695526648968,
|
229 |
+
"loss": 0.0856,
|
230 |
+
"step": 2800
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.0241356925279225,
|
234 |
+
"grad_norm": 0.05517578125,
|
235 |
+
"learning_rate": 0.0019024169952385887,
|
236 |
+
"loss": 0.0845,
|
237 |
+
"step": 2900
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.024967957787506035,
|
241 |
+
"grad_norm": 0.0546875,
|
242 |
+
"learning_rate": 0.0018920684425573864,
|
243 |
+
"loss": 0.0852,
|
244 |
+
"step": 3000
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"epoch": 0.024967957787506035,
|
248 |
+
"eval_peoplespeech-clean-transcription_loss": 1.6414048671722412,
|
249 |
+
"eval_peoplespeech-clean-transcription_model_preparation_time": 0.0065,
|
250 |
+
"eval_peoplespeech-clean-transcription_runtime": 9.8151,
|
251 |
+
"eval_peoplespeech-clean-transcription_samples_per_second": 6.521,
|
252 |
+
"eval_peoplespeech-clean-transcription_steps_per_second": 0.815,
|
253 |
+
"step": 3000
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 0.02580022304708957,
|
257 |
+
"grad_norm": 0.052978515625,
|
258 |
+
"learning_rate": 0.0018812295824940284,
|
259 |
+
"loss": 0.0836,
|
260 |
+
"step": 3100
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.026632488306673103,
|
264 |
+
"grad_norm": 0.05126953125,
|
265 |
+
"learning_rate": 0.0018699063724087904,
|
266 |
+
"loss": 0.0821,
|
267 |
+
"step": 3200
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.027464753566256637,
|
271 |
+
"grad_norm": 0.056884765625,
|
272 |
+
"learning_rate": 0.0018581050358751443,
|
273 |
+
"loss": 0.0816,
|
274 |
+
"step": 3300
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 0.02829701882584017,
|
278 |
+
"grad_norm": 0.045654296875,
|
279 |
+
"learning_rate": 0.0018458320592590974,
|
280 |
+
"loss": 0.0814,
|
281 |
+
"step": 3400
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.029129284085423705,
|
285 |
+
"grad_norm": 0.04638671875,
|
286 |
+
"learning_rate": 0.0018330941881540914,
|
287 |
+
"loss": 0.0791,
|
288 |
+
"step": 3500
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 0.029961549345007242,
|
292 |
+
"grad_norm": 0.043212890625,
|
293 |
+
"learning_rate": 0.0018198984236734246,
|
294 |
+
"loss": 0.0804,
|
295 |
+
"step": 3600
|
296 |
+
}
|
297 |
+
],
|
298 |
+
"logging_steps": 100,
|
299 |
+
"max_steps": 14400,
|
300 |
+
"num_input_tokens_seen": 0,
|
301 |
+
"num_train_epochs": 1,
|
302 |
+
"save_steps": 3600,
|
303 |
+
"stateful_callbacks": {
|
304 |
+
"TrainerControl": {
|
305 |
+
"args": {
|
306 |
+
"should_epoch_stop": false,
|
307 |
+
"should_evaluate": false,
|
308 |
+
"should_log": false,
|
309 |
+
"should_save": true,
|
310 |
+
"should_training_stop": false
|
311 |
+
},
|
312 |
+
"attributes": {}
|
313 |
+
}
|
314 |
+
},
|
315 |
+
"total_flos": 2.3112799838724096e+17,
|
316 |
+
"train_batch_size": 24,
|
317 |
+
"trial_name": null,
|
318 |
+
"trial_params": null
|
319 |
+
}
|
checkpoint-3600/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37b86db64b66888697120b24a102f1ab62ab1d7da7b6bd4cd2e497d4499c3fb5
|
3 |
+
size 5688
|
checkpoint-3600/ultravox_config.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from enum import Enum
|
3 |
+
from typing import Any, Dict, List, Optional
|
4 |
+
|
5 |
+
import transformers
|
6 |
+
|
7 |
+
|
8 |
+
@dataclasses.dataclass
|
9 |
+
class LoraConfigSimplified:
|
10 |
+
"""
|
11 |
+
Low Rank Approximation (LoRA) configuration.
|
12 |
+
|
13 |
+
Used for language and audio models separately.
|
14 |
+
"""
|
15 |
+
|
16 |
+
# The rank of the approximation
|
17 |
+
r: int = 0
|
18 |
+
lora_alpha: float = 8
|
19 |
+
target_modules: Optional[List[str]] = dataclasses.field(
|
20 |
+
default_factory=lambda: ["k_proj", "q_proj", "linear_k", "linear_q"]
|
21 |
+
)
|
22 |
+
# A list of module names regex patterns to unfreeze. Only used if r == 0.
|
23 |
+
unfreeze_layers: Optional[List[str]] = None
|
24 |
+
|
25 |
+
|
26 |
+
class LossFunction(str, Enum):
|
27 |
+
CrossEntropy = "ce"
|
28 |
+
KL_Divergence = "kl"
|
29 |
+
|
30 |
+
|
31 |
+
@dataclasses.dataclass
|
32 |
+
class LossConfig:
|
33 |
+
loss_function: LossFunction = LossFunction.CrossEntropy
|
34 |
+
kl_temperature: float = 2.0
|
35 |
+
|
36 |
+
@property
|
37 |
+
def requires_alt_fields(self):
|
38 |
+
return self.loss_function == LossFunction.KL_Divergence
|
39 |
+
|
40 |
+
|
41 |
+
class UltravoxConfig(transformers.PretrainedConfig):
|
42 |
+
r"""
|
43 |
+
This is the configuration class to store the configuration of a [`UltravoxForConditionalGeneration`]. It is used to instantiate an
|
44 |
+
Ultravox model according to the specified arguments, defining the model architecture.
|
45 |
+
|
46 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
47 |
+
documentation from [`PretrainedConfig`] for more information.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
audio_config (`Wav2Vec2Config`, *optional*):
|
51 |
+
Custom audio config or dict
|
52 |
+
text_config (`Union[AutoConfig, dict]`, *optional*):
|
53 |
+
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
|
54 |
+
ignore_index (`int`, *optional*, defaults to -100):
|
55 |
+
The ignore index for the loss function.
|
56 |
+
audio_token_index (`int`, *optional*, defaults to 32000):
|
57 |
+
The audio token index to encode the audio prompt.
|
58 |
+
stack_factor (`int`, *optional*, defaults to 8):
|
59 |
+
Audio downsampling factor for the multimodal projector.
|
60 |
+
norm_init (`float`, *optional*, defaults to 0.4):
|
61 |
+
The initialization value for the layer normalization.
|
62 |
+
projector_act (`str`, *optional*, defaults to `"swiglu"`):
|
63 |
+
The activation function used by the multimodal projector.
|
64 |
+
text_model_lora_config (`LoraConfigSimplified`, *optional*):
|
65 |
+
The LoRA configuration for finetuning the text model.
|
66 |
+
audio_model_lora_config (`LoraConfigSimplified`, *optional*):
|
67 |
+
The LoRA configuration for finetuning the audio model.
|
68 |
+
audio_latency_block_size (`int`, *optional*, defaults to `None`):
|
69 |
+
The latency block size for simulating audio streaming.
|
70 |
+
|
71 |
+
|
72 |
+
Example:
|
73 |
+
|
74 |
+
```python
|
75 |
+
>>> from transformers import UltravoxModel, Wav2Vec2Config, UltravoxConfig, LlamaConfig
|
76 |
+
|
77 |
+
>>> # Initializing an audio encoder config
|
78 |
+
>>> audio_config = Wav2Vec2Config()
|
79 |
+
|
80 |
+
>>> # Initializing a Llama config
|
81 |
+
>>> text_config = LlamaConfig()
|
82 |
+
|
83 |
+
>>> # Initializing a default configuration
|
84 |
+
>>> configuration = UltravoxConfig(audio_config, text_config)
|
85 |
+
|
86 |
+
>>> # Initializing a completely untrained model from the configuration
|
87 |
+
>>> model = UltravoxModel(configuration)
|
88 |
+
|
89 |
+
>>> # Accessing the model configuration
|
90 |
+
>>> configuration = model.config
|
91 |
+
|
92 |
+
>>> # Initialize a model from pretrained checkpoints and random projector weights
|
93 |
+
>>> config = UltravoxConfig(audio_model_id="facebook/wav2vec2-base-960h", text_model_id="meta-llama/Llama-2-7b-chat-hf")
|
94 |
+
```"""
|
95 |
+
|
96 |
+
model_type = "ultravox"
|
97 |
+
is_composition = False
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
audio_config: Optional[Dict[str, Any]] = None,
|
102 |
+
text_config: Optional[Dict[str, Any]] = None,
|
103 |
+
audio_model_id: Optional[str] = None,
|
104 |
+
text_model_id: Optional[str] = None,
|
105 |
+
ignore_index: int = -100,
|
106 |
+
hidden_size: int = 4096,
|
107 |
+
stack_factor: int = 8,
|
108 |
+
norm_init: float = 0.4,
|
109 |
+
projector_act: str = "swiglu",
|
110 |
+
projector_ln_mid: bool = False, # defaults to False for compatibility with v0.4.1 and below
|
111 |
+
text_model_lora_config: Optional[LoraConfigSimplified] = None,
|
112 |
+
audio_model_lora_config: Optional[LoraConfigSimplified] = None,
|
113 |
+
audio_latency_block_size: Optional[int] = None,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
self.ignore_index = ignore_index
|
117 |
+
|
118 |
+
self.audio_model_id = audio_model_id
|
119 |
+
self.text_model_id = text_model_id
|
120 |
+
|
121 |
+
self.hidden_size = hidden_size
|
122 |
+
self.stack_factor = stack_factor
|
123 |
+
self.norm_init = norm_init
|
124 |
+
self.projector_act = projector_act
|
125 |
+
self.projector_ln_mid = projector_ln_mid
|
126 |
+
if text_model_id is not None:
|
127 |
+
self.text_config: transformers.LlamaConfig = (
|
128 |
+
transformers.AutoConfig.from_pretrained(text_model_id)
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
text_config = text_config or {}
|
132 |
+
self.text_config = transformers.CONFIG_MAPPING[
|
133 |
+
text_config.get("model_type", "llama")
|
134 |
+
](**text_config)
|
135 |
+
|
136 |
+
if audio_model_id is not None:
|
137 |
+
self.audio_config: transformers.PretrainedConfig = (
|
138 |
+
transformers.AutoConfig.from_pretrained(audio_model_id)
|
139 |
+
)
|
140 |
+
else:
|
141 |
+
audio_config = audio_config or {}
|
142 |
+
self.audio_config = transformers.CONFIG_MAPPING[
|
143 |
+
audio_config.get("model_type", "wav2vec2")
|
144 |
+
](**audio_config)
|
145 |
+
|
146 |
+
self.text_model_lora_config = (
|
147 |
+
text_model_lora_config
|
148 |
+
if isinstance(text_model_lora_config, dict)
|
149 |
+
else dataclasses.asdict(text_model_lora_config or LoraConfigSimplified())
|
150 |
+
)
|
151 |
+
self.audio_model_lora_config = (
|
152 |
+
audio_model_lora_config
|
153 |
+
if isinstance(audio_model_lora_config, dict)
|
154 |
+
else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
|
155 |
+
)
|
156 |
+
self.audio_latency_block_size = audio_latency_block_size
|
157 |
+
|
158 |
+
self.vocab_size = self.text_config.vocab_size
|
159 |
+
|
160 |
+
self.initializer_range = self.text_config.initializer_range
|
161 |
+
|
162 |
+
super().__init__(**kwargs)
|
163 |
+
|
164 |
+
def to_diff_dict(self) -> Dict[str, Any]:
|
165 |
+
diff_dict = super().to_diff_dict()
|
166 |
+
|
167 |
+
# remove text_config and audio_config if text_model_id and audio_model_id are present
|
168 |
+
if self.text_model_id is not None:
|
169 |
+
diff_dict.pop("text_config", None)
|
170 |
+
if self.audio_model_id is not None:
|
171 |
+
diff_dict.pop("audio_config", None)
|
172 |
+
|
173 |
+
return diff_dict
|
checkpoint-3600/ultravox_model.py
ADDED
@@ -0,0 +1,754 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import re
|
3 |
+
from typing import Any, Dict, Optional, Set, Tuple, Union
|
4 |
+
|
5 |
+
import peft
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import transformers
|
10 |
+
import transformers.activations
|
11 |
+
import transformers.modeling_outputs
|
12 |
+
import transformers.models
|
13 |
+
from transformers.models.whisper import modeling_whisper as whisper
|
14 |
+
|
15 |
+
# We must use relative import in this directory to allow uploading to HF Hub
|
16 |
+
# Even "from . import X" pattern doesn't work (undocumented and unclear why)
|
17 |
+
from .ultravox_config import LossConfig
|
18 |
+
from .ultravox_config import LossFunction
|
19 |
+
from .ultravox_config import UltravoxConfig
|
20 |
+
|
21 |
+
|
22 |
+
class UltravoxModel(transformers.LlamaPreTrainedModel):
|
23 |
+
"""
|
24 |
+
The Ultravox model which consists of an audio encoder and a language model.
|
25 |
+
|
26 |
+
Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
|
27 |
+
projected to the language model's embedding space using a few linear layers.
|
28 |
+
The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
|
29 |
+
|
30 |
+
A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
|
31 |
+
|
32 |
+
Parameters:
|
33 |
+
config: Model configuration class with all the parameters of the model.
|
34 |
+
"""
|
35 |
+
|
36 |
+
config_class = UltravoxConfig
|
37 |
+
config: UltravoxConfig # for type hinting
|
38 |
+
# Usually we load encoder and LLM weights from a pretrained model separately, so they are allowed to be missing
|
39 |
+
_keys_to_ignore_on_load_missing = ["audio_tower.*", "language_model.*"]
|
40 |
+
# Since we have kwargs in forward, we need to set this to False, otherwise grad_accum_steps will cause incorrect train loss to be reported
|
41 |
+
# see https://github.com/huggingface/transformers/issues/35856 and https://github.com/huggingface/trl/pull/2615/files
|
42 |
+
accepts_loss_kwargs = False
|
43 |
+
|
44 |
+
def __init__(self, config: UltravoxConfig):
|
45 |
+
super().__init__(config)
|
46 |
+
self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook)
|
47 |
+
|
48 |
+
self.keep_params: Set[str] = set()
|
49 |
+
self.vocab_size = config.vocab_size
|
50 |
+
|
51 |
+
self.audio_tower = self._create_audio_tower(config)
|
52 |
+
self.multi_modal_projector = self._create_multi_modal_projector(config)
|
53 |
+
self.language_model = self._create_language_model(config)
|
54 |
+
|
55 |
+
# Determine no_split_modules dynamically to use with FSDP auto_wrap policy.
|
56 |
+
# FSDP throws an error if some of the layer types are not found in the model.
|
57 |
+
# This would be something like ["LlamaDecoderLayer", "WhisperEncoderLayer"]
|
58 |
+
self._no_split_modules = (self.language_model._no_split_modules or []) + (
|
59 |
+
self.audio_tower._no_split_modules or []
|
60 |
+
)
|
61 |
+
|
62 |
+
self.loss_config = LossConfig()
|
63 |
+
self.post_init()
|
64 |
+
|
65 |
+
def get_input_embeddings(self):
|
66 |
+
return self.language_model.get_input_embeddings()
|
67 |
+
|
68 |
+
def set_input_embeddings(self, value):
|
69 |
+
self.language_model.set_input_embeddings(value)
|
70 |
+
|
71 |
+
def get_output_embeddings(self):
|
72 |
+
return self.language_model.get_output_embeddings()
|
73 |
+
|
74 |
+
def set_output_embeddings(self, new_embeddings):
|
75 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
76 |
+
|
77 |
+
def set_decoder(self, decoder):
|
78 |
+
self.language_model.set_decoder(decoder)
|
79 |
+
|
80 |
+
def get_decoder(self):
|
81 |
+
return self.language_model.get_decoder()
|
82 |
+
|
83 |
+
def tie_weights(self):
|
84 |
+
return self.language_model.tie_weights()
|
85 |
+
|
86 |
+
def set_loss_config(self, loss_config: LossConfig):
|
87 |
+
self.loss_config = loss_config
|
88 |
+
|
89 |
+
def _setup_cache(
|
90 |
+
self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
|
91 |
+
):
|
92 |
+
self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
|
93 |
+
|
94 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
95 |
+
return self.language_model._reorder_cache(past_key_values, beam_idx)
|
96 |
+
|
97 |
+
def resize_token_embeddings(
|
98 |
+
self,
|
99 |
+
new_num_tokens: Optional[int] = None,
|
100 |
+
pad_to_multiple_of: Optional[int] = None,
|
101 |
+
) -> nn.Embedding:
|
102 |
+
model_embeds = self.language_model.resize_token_embeddings(
|
103 |
+
new_num_tokens, pad_to_multiple_of
|
104 |
+
)
|
105 |
+
# update vocab size
|
106 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
107 |
+
self.config.vocab_size = model_embeds.num_embeddings
|
108 |
+
self.vocab_size = model_embeds.num_embeddings
|
109 |
+
return model_embeds
|
110 |
+
|
111 |
+
def _compute_kl_loss(
|
112 |
+
self,
|
113 |
+
lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
|
114 |
+
labels: Optional[torch.Tensor] = None,
|
115 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
116 |
+
alt_input_ids: Optional[torch.Tensor] = None,
|
117 |
+
alt_attention_mask: Optional[torch.Tensor] = None,
|
118 |
+
alt_labels: Optional[torch.Tensor] = None,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
# disable gradient computation for the teacher model
|
122 |
+
with torch.no_grad():
|
123 |
+
# compute the teacher (text-only) model's distribution
|
124 |
+
alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
|
125 |
+
alt_lm_output = self.language_model.forward(
|
126 |
+
inputs_embeds=alt_inputs_embeds,
|
127 |
+
labels=alt_labels,
|
128 |
+
attention_mask=alt_attention_mask,
|
129 |
+
past_key_values=past_key_values,
|
130 |
+
**kwargs,
|
131 |
+
)
|
132 |
+
# compute the KL divergence loss between the two models
|
133 |
+
kl_loss = F.kl_div(
|
134 |
+
F.log_softmax(
|
135 |
+
lm_output.logits[labels != -100] / self.loss_config.kl_temperature,
|
136 |
+
dim=-1,
|
137 |
+
),
|
138 |
+
F.softmax(
|
139 |
+
alt_lm_output.logits[alt_labels != -100]
|
140 |
+
/ self.loss_config.kl_temperature,
|
141 |
+
dim=-1,
|
142 |
+
),
|
143 |
+
reduction="batchmean",
|
144 |
+
)
|
145 |
+
return {"loss": kl_loss}
|
146 |
+
|
147 |
+
def forward(
|
148 |
+
self,
|
149 |
+
input_ids: torch.Tensor,
|
150 |
+
audio_values: Optional[torch.FloatTensor] = None,
|
151 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
152 |
+
labels: Optional[torch.Tensor] = None,
|
153 |
+
attention_mask: Optional[torch.Tensor] = None,
|
154 |
+
audio_token_start_idx: Optional[torch.Tensor] = None,
|
155 |
+
audio_len: Optional[torch.Tensor] = None,
|
156 |
+
audio_token_len: Optional[torch.Tensor] = None,
|
157 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
158 |
+
# the alt_* fields are needed for KL divergence loss
|
159 |
+
alt_input_ids: Optional[torch.Tensor] = None,
|
160 |
+
alt_attention_mask: Optional[torch.Tensor] = None,
|
161 |
+
alt_labels: Optional[torch.Tensor] = None,
|
162 |
+
**kwargs,
|
163 |
+
) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
|
164 |
+
"""
|
165 |
+
Forward pass for the Ultravox model.
|
166 |
+
|
167 |
+
`input_ids` are the tokenized text input. They are embedded by the language model as usual.
|
168 |
+
`audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
|
169 |
+
projected to the language model's embedding space using a few linear layers.
|
170 |
+
The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
|
171 |
+
of the audio embeddings in the merged embeddings.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
input_ids: The tokenized text input.
|
175 |
+
audio_values: The processed audio values.
|
176 |
+
inputs_embeds: The embeddings for the input tokens.
|
177 |
+
labels: The tokenized text labels.
|
178 |
+
attention_mask: The attention mask for the input.
|
179 |
+
position_ids: The position ids for the input.
|
180 |
+
past_key_values: The past key value cache for the language model attention layers.
|
181 |
+
**kwargs: Additional keyword arguments. Passed directly to the language model.
|
182 |
+
"""
|
183 |
+
if inputs_embeds is None:
|
184 |
+
# B x T -> B x T x D
|
185 |
+
inputs_embeds = self.get_input_embeddings().forward(input_ids)
|
186 |
+
|
187 |
+
if audio_values is not None:
|
188 |
+
assert (
|
189 |
+
audio_token_start_idx is not None and audio_token_len is not None
|
190 |
+
), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
|
191 |
+
assert (
|
192 |
+
len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
|
193 |
+
), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."
|
194 |
+
|
195 |
+
# B x A/3200 x D
|
196 |
+
audio_tower_output = self.audio_tower.forward(
|
197 |
+
audio_values.to(self.audio_tower.dtype),
|
198 |
+
audio_len=audio_len,
|
199 |
+
).last_hidden_state
|
200 |
+
audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
|
201 |
+
|
202 |
+
audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
|
203 |
+
|
204 |
+
# combine audio and text embeddings
|
205 |
+
for i, (audio, start, length) in enumerate(
|
206 |
+
zip(audio_embeds, audio_token_start_idx, audio_token_len)
|
207 |
+
):
|
208 |
+
length = min(length, audio.shape[0])
|
209 |
+
inputs_embeds[i, start : start + length] = audio[:length]
|
210 |
+
|
211 |
+
lm_output = self.language_model.forward(
|
212 |
+
inputs_embeds=inputs_embeds,
|
213 |
+
labels=labels,
|
214 |
+
attention_mask=attention_mask,
|
215 |
+
past_key_values=past_key_values,
|
216 |
+
**kwargs,
|
217 |
+
)
|
218 |
+
if self.training:
|
219 |
+
if self.loss_config.loss_function == LossFunction.CrossEntropy:
|
220 |
+
return lm_output
|
221 |
+
elif self.loss_config.loss_function == LossFunction.KL_Divergence:
|
222 |
+
return self._compute_kl_loss(
|
223 |
+
lm_output=lm_output,
|
224 |
+
labels=labels,
|
225 |
+
past_key_values=past_key_values,
|
226 |
+
alt_input_ids=alt_input_ids,
|
227 |
+
alt_attention_mask=alt_attention_mask,
|
228 |
+
alt_labels=alt_labels,
|
229 |
+
**kwargs,
|
230 |
+
)
|
231 |
+
else:
|
232 |
+
raise ValueError(
|
233 |
+
f"Unsupported loss function: {self.loss_config.loss_function}"
|
234 |
+
)
|
235 |
+
else:
|
236 |
+
return lm_output
|
237 |
+
|
238 |
+
def prepare_inputs_for_generation(
|
239 |
+
self,
|
240 |
+
input_ids: torch.Tensor,
|
241 |
+
audio_values: Optional[torch.FloatTensor] = None,
|
242 |
+
audio_token_start_idx: Optional[torch.Tensor] = None,
|
243 |
+
audio_token_len: Optional[torch.Tensor] = None,
|
244 |
+
audio_len: Optional[torch.Tensor] = None,
|
245 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
246 |
+
attention_mask: Optional[torch.Tensor] = None,
|
247 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
248 |
+
cache_position: Optional[torch.Tensor] = None,
|
249 |
+
**kwargs,
|
250 |
+
) -> Dict[str, Any]:
|
251 |
+
model_input = self.language_model.prepare_inputs_for_generation(
|
252 |
+
input_ids=input_ids,
|
253 |
+
past_key_values=past_key_values,
|
254 |
+
attention_mask=attention_mask,
|
255 |
+
inputs_embeds=inputs_embeds,
|
256 |
+
cache_position=cache_position,
|
257 |
+
**kwargs,
|
258 |
+
)
|
259 |
+
|
260 |
+
# include audio information in model_input only when it is needed during prefilling
|
261 |
+
# audio_token_start_idx should always be relative to the current cache position
|
262 |
+
prefill_start_idx = 0 if cache_position is None else cache_position[0]
|
263 |
+
if (
|
264 |
+
audio_values is not None
|
265 |
+
and audio_token_start_idx is not None
|
266 |
+
and prefill_start_idx <= torch.max(audio_token_start_idx)
|
267 |
+
):
|
268 |
+
model_input["audio_values"] = audio_values
|
269 |
+
model_input["audio_token_start_idx"] = (
|
270 |
+
audio_token_start_idx - prefill_start_idx
|
271 |
+
)
|
272 |
+
model_input["audio_token_len"] = audio_token_len
|
273 |
+
model_input["audio_len"] = audio_len
|
274 |
+
|
275 |
+
return model_input
|
276 |
+
|
277 |
+
@classmethod
|
278 |
+
def _create_multi_modal_projector(
|
279 |
+
cls, config: UltravoxConfig
|
280 |
+
) -> "UltravoxProjector":
|
281 |
+
projector = UltravoxProjector(config)
|
282 |
+
projector.to(config.torch_dtype)
|
283 |
+
return projector
|
284 |
+
|
285 |
+
@classmethod
|
286 |
+
def _create_audio_tower(
|
287 |
+
cls, config: UltravoxConfig
|
288 |
+
) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
|
289 |
+
if config.audio_model_id is not None:
|
290 |
+
if "whisper" in config.audio_model_id.lower():
|
291 |
+
audio_tower = ModifiedWhisperEncoder.from_pretrained(
|
292 |
+
config.audio_model_id, torch_dtype=config.torch_dtype
|
293 |
+
)
|
294 |
+
audio_tower.init_latency_mask(
|
295 |
+
config.audio_latency_block_size, dtype=config.torch_dtype
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
assert config.audio_latency_block_size in (
|
299 |
+
None,
|
300 |
+
0,
|
301 |
+
), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
|
302 |
+
audio_tower = transformers.AutoModel.from_pretrained(
|
303 |
+
config.audio_model_id, torch_dtype=config.torch_dtype
|
304 |
+
)
|
305 |
+
else:
|
306 |
+
if "whisper" in config.audio_config._name_or_path.lower():
|
307 |
+
audio_tower = ModifiedWhisperEncoder(config.audio_config)
|
308 |
+
audio_tower.init_latency_mask(
|
309 |
+
config.audio_latency_block_size, dtype=config.torch_dtype
|
310 |
+
)
|
311 |
+
else:
|
312 |
+
assert config.audio_latency_block_size in (
|
313 |
+
None,
|
314 |
+
0,
|
315 |
+
), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
|
316 |
+
with transformers.modeling_utils.no_init_weights():
|
317 |
+
# we only ever use from_config if the weights are retrained, hence initializing is not
|
318 |
+
# required. This makes the model quite creation faster since init on CPU is quite slow.
|
319 |
+
audio_tower = transformers.AutoModel.from_config(
|
320 |
+
config.audio_config
|
321 |
+
)
|
322 |
+
|
323 |
+
if isinstance(
|
324 |
+
audio_tower,
|
325 |
+
(transformers.Wav2Vec2BertModel, transformers.WhisperModel),
|
326 |
+
):
|
327 |
+
# For these models we only need the encoder part
|
328 |
+
# Wav2Vec2BertModel -> Wav2Vec2BertEncoder
|
329 |
+
# WhisperModel -> WhisperEncoder
|
330 |
+
audio_tower = audio_tower.encoder
|
331 |
+
|
332 |
+
audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
|
333 |
+
return audio_tower
|
334 |
+
|
335 |
+
@classmethod
|
336 |
+
def _create_language_model(
|
337 |
+
cls, config: UltravoxConfig
|
338 |
+
) -> transformers.LlamaForCausalLM:
|
339 |
+
if config.text_model_id is not None:
|
340 |
+
language_model = transformers.AutoModelForCausalLM.from_pretrained(
|
341 |
+
config.text_model_id,
|
342 |
+
attn_implementation=config._attn_implementation,
|
343 |
+
torch_dtype=config.torch_dtype,
|
344 |
+
)
|
345 |
+
else:
|
346 |
+
with transformers.modeling_utils.no_init_weights():
|
347 |
+
# we only ever use from_config if the weights are retrained, hence initializing is not
|
348 |
+
# required. This makes the model quite creation faster since init on CPU is quite slow.
|
349 |
+
language_model = transformers.AutoModelForCausalLM.from_config(
|
350 |
+
config.text_config,
|
351 |
+
attn_implementation=config._attn_implementation,
|
352 |
+
torch_dtype=config.torch_dtype,
|
353 |
+
)
|
354 |
+
|
355 |
+
language_model = apply_lora(language_model, config.text_model_lora_config)
|
356 |
+
return language_model
|
357 |
+
|
358 |
+
def merge_and_unload(self):
|
359 |
+
if isinstance(self.language_model, peft.PeftModel):
|
360 |
+
self.language_model = self.language_model.merge_and_unload()
|
361 |
+
# no need to download base language model weights anymore, so we can remove the id
|
362 |
+
self.config.text_model_id = None
|
363 |
+
self.keep_params.update(
|
364 |
+
set(
|
365 |
+
[
|
366 |
+
f"language_model.{name}"
|
367 |
+
for name, _ in self.language_model.named_parameters()
|
368 |
+
]
|
369 |
+
)
|
370 |
+
)
|
371 |
+
|
372 |
+
if isinstance(self.audio_tower, peft.PeftModel):
|
373 |
+
self.audio_tower = self.audio_tower.merge_and_unload()
|
374 |
+
# no need to download base audio model weights anymore, so we can remove the id
|
375 |
+
self.config.audio_model_id = None
|
376 |
+
self.keep_params.update(
|
377 |
+
set(
|
378 |
+
[
|
379 |
+
f"audio_tower.{name}"
|
380 |
+
for name, _ in self.audio_tower.named_parameters()
|
381 |
+
]
|
382 |
+
)
|
383 |
+
)
|
384 |
+
|
385 |
+
for param in ["text_model_lora_config", "audio_model_lora_config"]:
|
386 |
+
if hasattr(self.config, param):
|
387 |
+
delattr(self.config, param)
|
388 |
+
|
389 |
+
def push_to_hub(self, *args, **kwargs):
|
390 |
+
self.merge_and_unload()
|
391 |
+
return super().push_to_hub(*args, **kwargs)
|
392 |
+
|
393 |
+
def diff_state_dict(
|
394 |
+
self, state_dict: Optional[Dict[str, Any]] = None
|
395 |
+
) -> Dict[str, Any]:
|
396 |
+
if state_dict is None:
|
397 |
+
state_dict = super().state_dict()
|
398 |
+
|
399 |
+
named_params = dict(self.named_parameters())
|
400 |
+
|
401 |
+
state_dict = {
|
402 |
+
k: v
|
403 |
+
for k, v in state_dict.items()
|
404 |
+
if k in self.keep_params
|
405 |
+
or (k in named_params and named_params[k].requires_grad)
|
406 |
+
}
|
407 |
+
|
408 |
+
return state_dict
|
409 |
+
|
410 |
+
def save_pretrained(
|
411 |
+
self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs
|
412 |
+
):
|
413 |
+
state_dict = self.diff_state_dict(state_dict)
|
414 |
+
|
415 |
+
super().save_pretrained(*args, state_dict=state_dict, **kwargs)
|
416 |
+
|
417 |
+
def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs):
|
418 |
+
self.keep_params.update(set(state_dict.keys()))
|
419 |
+
|
420 |
+
def print_trainable_parameters(self):
|
421 |
+
"""
|
422 |
+
Prints the number of trainable parameters in the model (reuses Peft model's method)
|
423 |
+
"""
|
424 |
+
count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
|
425 |
+
|
426 |
+
trainable_params, all_param = count_params(self)
|
427 |
+
|
428 |
+
logging.info(
|
429 |
+
f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
|
430 |
+
f" || trainable%: {100 * trainable_params / all_param:.1f}%"
|
431 |
+
)
|
432 |
+
|
433 |
+
lm_trainable_params, lm_all_params = count_params(self.language_model)
|
434 |
+
audio_trainable_params, audio_all_params = count_params(self.audio_tower)
|
435 |
+
|
436 |
+
projector_trainable_params = (
|
437 |
+
trainable_params - lm_trainable_params - audio_trainable_params
|
438 |
+
)
|
439 |
+
projector_all_params = all_param - lm_all_params - audio_all_params
|
440 |
+
|
441 |
+
logging.info(
|
442 |
+
f"Trainable%: "
|
443 |
+
f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
|
444 |
+
f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
|
445 |
+
f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
|
446 |
+
)
|
447 |
+
|
448 |
+
|
449 |
+
# TODO: refactor common parts to a shared module
|
450 |
+
def is_cache_empty(
|
451 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]]
|
452 |
+
) -> bool:
|
453 |
+
"""
|
454 |
+
Check if the cache is empty.
|
455 |
+
"""
|
456 |
+
if past_key_values is None:
|
457 |
+
return True
|
458 |
+
if isinstance(past_key_values, tuple):
|
459 |
+
return all(len(c) == 0 for c in past_key_values)
|
460 |
+
return past_key_values.get_seq_length() == 0
|
461 |
+
|
462 |
+
|
463 |
+
def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
|
464 |
+
"""
|
465 |
+
Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
|
466 |
+
"""
|
467 |
+
unfreeze_layers = lora_config.pop("unfreeze_layers", None)
|
468 |
+
lora_config = peft.LoraConfig(**lora_config or {})
|
469 |
+
|
470 |
+
if lora_config.r == 0:
|
471 |
+
# freeze the model entirely, except for the specified layers
|
472 |
+
for name, param in model.named_parameters():
|
473 |
+
if not unfreeze_layers or not any(
|
474 |
+
re.match(layer, name) for layer in unfreeze_layers
|
475 |
+
):
|
476 |
+
param.requires_grad = False
|
477 |
+
else:
|
478 |
+
logging.info(f"Unfreezing layer: {name} with #{param.numel()} params")
|
479 |
+
else:
|
480 |
+
model = peft.get_peft_model(model, lora_config)
|
481 |
+
|
482 |
+
return model
|
483 |
+
|
484 |
+
|
485 |
+
class StackAudioFrames(nn.Module):
|
486 |
+
"""
|
487 |
+
Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.
|
488 |
+
|
489 |
+
The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
|
490 |
+
NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
|
491 |
+
we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
|
492 |
+
In most cases this extra padding will get removed in the model's forward function so it has no effect.
|
493 |
+
"""
|
494 |
+
|
495 |
+
def __init__(self, stack_factor: int = 8):
|
496 |
+
super().__init__()
|
497 |
+
self.stack_factor = stack_factor
|
498 |
+
|
499 |
+
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
|
500 |
+
B, T, C = audio_embeds.shape
|
501 |
+
T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
|
502 |
+
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
|
503 |
+
B, T, C = audio_embeds.shape
|
504 |
+
audio_embeds = audio_embeds.view(
|
505 |
+
B, T // self.stack_factor, C * self.stack_factor
|
506 |
+
)
|
507 |
+
return audio_embeds
|
508 |
+
|
509 |
+
|
510 |
+
class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
|
511 |
+
def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
|
512 |
+
super().__init__(hidden_size=hidden_size, eps=eps)
|
513 |
+
self.weight.data.fill_(init)
|
514 |
+
|
515 |
+
|
516 |
+
class SwiGLU(nn.Module):
|
517 |
+
def forward(self, x):
|
518 |
+
x, gate = x.chunk(2, dim=-1)
|
519 |
+
return F.silu(gate) * x
|
520 |
+
|
521 |
+
|
522 |
+
class UltravoxProjector(nn.Module):
|
523 |
+
def __init__(self, config: UltravoxConfig):
|
524 |
+
super().__init__()
|
525 |
+
self.hidden_dim = config.hidden_size
|
526 |
+
self._pad_and_stack = StackAudioFrames(config.stack_factor)
|
527 |
+
dim_in = config.audio_config.hidden_size * config.stack_factor
|
528 |
+
self.ln_pre = RMSNorm(dim_in, init=config.norm_init)
|
529 |
+
self.linear_1 = nn.Linear(dim_in, self.hidden_dim, bias=False)
|
530 |
+
dim_mid = self.hidden_dim
|
531 |
+
self.act = transformers.activations.get_activation(config.projector_act)
|
532 |
+
dim_mid = dim_mid // 2 if config.projector_act == "swiglu" else dim_mid
|
533 |
+
dim_out = config.text_config.hidden_size
|
534 |
+
self.linear_2 = nn.Linear(dim_mid, dim_out, bias=False)
|
535 |
+
|
536 |
+
# Ultravox v0.4.1 and below uses layer_norm after the second linear layer,
|
537 |
+
# while v0.5.0 and above uses layer_norm after the first linear layer.
|
538 |
+
if config.projector_ln_mid:
|
539 |
+
self.ln_mid: nn.Module = RMSNorm(dim_mid, init=config.norm_init)
|
540 |
+
self.ln_post: nn.Module = nn.Identity()
|
541 |
+
else:
|
542 |
+
self.ln_mid = nn.Identity()
|
543 |
+
self.ln_post = RMSNorm(dim_out, init=config.norm_init)
|
544 |
+
|
545 |
+
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
|
546 |
+
audio_features = self._pad_and_stack(audio_features)
|
547 |
+
audio_features = self.ln_pre(audio_features)
|
548 |
+
hidden_states = self.linear_1(audio_features)
|
549 |
+
hidden_states = self.act(hidden_states)
|
550 |
+
hidden_states = self.ln_mid(hidden_states)
|
551 |
+
hidden_states = self.linear_2(hidden_states)
|
552 |
+
hidden_states = self.ln_post(hidden_states)
|
553 |
+
return hidden_states
|
554 |
+
|
555 |
+
|
556 |
+
class ModifiedWhisperEncoder(
|
557 |
+
whisper.WhisperEncoder, transformers.modeling_utils.ModuleUtilsMixin
|
558 |
+
):
|
559 |
+
"""
|
560 |
+
Encoder portion of OpenAI's Whisper model.
|
561 |
+
|
562 |
+
This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
|
563 |
+
1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
|
564 |
+
2. allow less than 30 second of audio padding to be passed in:
|
565 |
+
- relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
|
566 |
+
- embed_pos is now sliced to match the length of `inputs_embeds`
|
567 |
+
|
568 |
+
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
|
569 |
+
"""
|
570 |
+
|
571 |
+
base_model_prefix = "model.encoder"
|
572 |
+
_no_split_modules = ["WhisperEncoderLayer"]
|
573 |
+
|
574 |
+
def __init__(self, config: transformers.WhisperConfig):
|
575 |
+
super().__init__(config)
|
576 |
+
self.config.is_decoder = False
|
577 |
+
|
578 |
+
def init_latency_mask(self, audio_latency_block_size: int, dtype: torch.dtype):
|
579 |
+
if audio_latency_block_size is None:
|
580 |
+
self.audio_streaming_mask = None
|
581 |
+
return
|
582 |
+
|
583 |
+
# maximum sequence length
|
584 |
+
max_seqlen = (
|
585 |
+
self.config.max_source_positions
|
586 |
+
* self.conv1.stride[0]
|
587 |
+
* self.conv2.stride[0]
|
588 |
+
)
|
589 |
+
assert (
|
590 |
+
max_seqlen > 0
|
591 |
+
), f"maximum sequence length must be positive, got {max_seqlen}"
|
592 |
+
assert (
|
593 |
+
max_seqlen % audio_latency_block_size == 0
|
594 |
+
), f"audio_latency_block_size {audio_latency_block_size} must divide {max_seqlen} evenly."
|
595 |
+
# Given the block size, we calculate number of blocks.
|
596 |
+
audio_latency_nblocks = max_seqlen // audio_latency_block_size
|
597 |
+
audio_streaming_mask = (
|
598 |
+
torch.tril(
|
599 |
+
torch.ones(audio_latency_nblocks, audio_latency_nblocks),
|
600 |
+
diagonal=0,
|
601 |
+
)
|
602 |
+
.repeat_interleave(audio_latency_block_size, dim=0)
|
603 |
+
.repeat_interleave(audio_latency_block_size, dim=1)
|
604 |
+
)
|
605 |
+
audio_streaming_mask = (1.0 - audio_streaming_mask) * torch.finfo(dtype).min
|
606 |
+
audio_streaming_mask = audio_streaming_mask[None, None, :, :]
|
607 |
+
self.register_buffer(
|
608 |
+
"audio_streaming_mask", audio_streaming_mask, persistent=False
|
609 |
+
)
|
610 |
+
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
input_features,
|
614 |
+
audio_len=None,
|
615 |
+
head_mask=None,
|
616 |
+
output_attentions=None,
|
617 |
+
output_hidden_states=None,
|
618 |
+
return_dict=None,
|
619 |
+
):
|
620 |
+
expected_seq_length = (
|
621 |
+
self.config.max_source_positions
|
622 |
+
* self.conv1.stride[0]
|
623 |
+
* self.conv2.stride[0]
|
624 |
+
)
|
625 |
+
if input_features.shape[-1] > expected_seq_length:
|
626 |
+
raise ValueError(
|
627 |
+
f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
|
628 |
+
)
|
629 |
+
|
630 |
+
output_attentions = (
|
631 |
+
output_attentions
|
632 |
+
if output_attentions is not None
|
633 |
+
else self.config.output_attentions
|
634 |
+
)
|
635 |
+
output_hidden_states = (
|
636 |
+
output_hidden_states
|
637 |
+
if output_hidden_states is not None
|
638 |
+
else self.config.output_hidden_states
|
639 |
+
)
|
640 |
+
return_dict = (
|
641 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
642 |
+
)
|
643 |
+
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
644 |
+
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
645 |
+
|
646 |
+
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
647 |
+
embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
|
648 |
+
|
649 |
+
hidden_states = inputs_embeds + embed_pos
|
650 |
+
hidden_states = nn.functional.dropout(
|
651 |
+
hidden_states, p=self.dropout, training=self.training
|
652 |
+
)
|
653 |
+
|
654 |
+
encoder_states = () if output_hidden_states else None
|
655 |
+
all_attentions = () if output_attentions else None
|
656 |
+
|
657 |
+
# Create attention mask based on audio lengths to mask out padding tokens
|
658 |
+
# For each sample in batch:
|
659 |
+
# - Convert raw audio length to feature length after convolutions
|
660 |
+
# - Create boolean mask that is True for valid positions and False for padding
|
661 |
+
# - Convert to extended attention mask format expected by transformer layers
|
662 |
+
# (1.0 for positions to attend to, large negative for positions to ignore)
|
663 |
+
# This masking ensures consistent behavior between training and inference
|
664 |
+
# by preventing the model from attending to padding tokens in both cases
|
665 |
+
attention_mask = None
|
666 |
+
if audio_len != None:
|
667 |
+
audio_feature_len = self._get_feat_extract_output_lengths(audio_len)
|
668 |
+
max_seq_len = hidden_states.shape[1]
|
669 |
+
attention_mask = torch.arange(max_seq_len, device=hidden_states.device)[
|
670 |
+
None, :
|
671 |
+
].lt(audio_feature_len.view(-1, 1))
|
672 |
+
attention_mask = self.get_extended_attention_mask(
|
673 |
+
attention_mask,
|
674 |
+
None,
|
675 |
+
device=hidden_states.device,
|
676 |
+
dtype=hidden_states.dtype,
|
677 |
+
)
|
678 |
+
|
679 |
+
if self.audio_streaming_mask is not None:
|
680 |
+
seqlen = hidden_states.size(-2)
|
681 |
+
if attention_mask is not None:
|
682 |
+
attention_mask = torch.minimum(
|
683 |
+
self.audio_streaming_mask[:, :, :seqlen, :seqlen], attention_mask
|
684 |
+
) # merge
|
685 |
+
else:
|
686 |
+
attention_mask = self.audio_streaming_mask[:, :, :seqlen, :seqlen]
|
687 |
+
attention_mask = attention_mask.to(hidden_states.dtype)
|
688 |
+
|
689 |
+
# check if head_mask has a correct number of layers specified if desired
|
690 |
+
if head_mask is not None:
|
691 |
+
assert head_mask.size()[0] == (
|
692 |
+
len(self.layers)
|
693 |
+
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
694 |
+
|
695 |
+
for idx, encoder_layer in enumerate(self.layers):
|
696 |
+
if output_hidden_states:
|
697 |
+
encoder_states = encoder_states + (hidden_states,)
|
698 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
699 |
+
to_drop = False
|
700 |
+
if self.training:
|
701 |
+
dropout_probability = torch.rand([])
|
702 |
+
if dropout_probability < self.layerdrop: # skip the layer
|
703 |
+
to_drop = True
|
704 |
+
|
705 |
+
if to_drop:
|
706 |
+
layer_outputs = (None, None)
|
707 |
+
else:
|
708 |
+
if self.gradient_checkpointing and self.training:
|
709 |
+
layer_outputs = self._gradient_checkpointing_func(
|
710 |
+
encoder_layer.__call__,
|
711 |
+
hidden_states,
|
712 |
+
attention_mask,
|
713 |
+
(head_mask[idx] if head_mask is not None else None),
|
714 |
+
output_attentions,
|
715 |
+
)
|
716 |
+
else:
|
717 |
+
layer_outputs = encoder_layer(
|
718 |
+
hidden_states,
|
719 |
+
attention_mask,
|
720 |
+
layer_head_mask=(
|
721 |
+
head_mask[idx] if head_mask is not None else None
|
722 |
+
),
|
723 |
+
output_attentions=output_attentions,
|
724 |
+
)
|
725 |
+
|
726 |
+
hidden_states = layer_outputs[0]
|
727 |
+
|
728 |
+
if output_attentions:
|
729 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
730 |
+
|
731 |
+
hidden_states = self.layer_norm(hidden_states)
|
732 |
+
if output_hidden_states:
|
733 |
+
encoder_states = encoder_states + (hidden_states,)
|
734 |
+
|
735 |
+
if not return_dict:
|
736 |
+
return tuple(
|
737 |
+
v
|
738 |
+
for v in [hidden_states, encoder_states, all_attentions]
|
739 |
+
if v is not None
|
740 |
+
)
|
741 |
+
return transformers.modeling_outputs.BaseModelOutput(
|
742 |
+
last_hidden_state=hidden_states,
|
743 |
+
hidden_states=encoder_states,
|
744 |
+
attentions=all_attentions,
|
745 |
+
)
|
746 |
+
|
747 |
+
|
748 |
+
UltravoxConfig.register_for_auto_class()
|
749 |
+
UltravoxModel.register_for_auto_class()
|
750 |
+
|
751 |
+
transformers.AutoConfig.register("ultravox", UltravoxConfig)
|
752 |
+
transformers.AutoModel.register(UltravoxConfig, UltravoxModel)
|
753 |
+
|
754 |
+
transformers.activations.ACT2FN["swiglu"] = SwiGLU
|
checkpoint-3600/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-7200/config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"UltravoxModel"
|
4 |
+
],
|
5 |
+
"audio_latency_block_size": null,
|
6 |
+
"audio_model_id": "openai/whisper-large-v3-turbo",
|
7 |
+
"audio_model_lora_config": {
|
8 |
+
"lora_alpha": 8,
|
9 |
+
"r": 0,
|
10 |
+
"target_modules": [
|
11 |
+
"k_proj",
|
12 |
+
"q_proj",
|
13 |
+
"linear_k",
|
14 |
+
"linear_q"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
"auto_map": {
|
18 |
+
"AutoConfig": "ultravox_config.UltravoxConfig",
|
19 |
+
"AutoModel": "ultravox_model.UltravoxModel"
|
20 |
+
},
|
21 |
+
"hidden_size": 4096,
|
22 |
+
"ignore_index": -100,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"model_type": "ultravox",
|
25 |
+
"norm_init": 0.4,
|
26 |
+
"pad_token_id": 2,
|
27 |
+
"projector_act": "swiglu",
|
28 |
+
"projector_ln_mid": false,
|
29 |
+
"stack_factor": 8,
|
30 |
+
"text_model_id": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
31 |
+
"text_model_lora_config": {
|
32 |
+
"lora_alpha": 8,
|
33 |
+
"r": 0,
|
34 |
+
"target_modules": [
|
35 |
+
"k_proj",
|
36 |
+
"q_proj",
|
37 |
+
"linear_k",
|
38 |
+
"linear_q"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
"torch_dtype": "bfloat16",
|
42 |
+
"transformers_version": "4.47.0",
|
43 |
+
"vocab_size": 49152
|
44 |
+
}
|
checkpoint-7200/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 2,
|
6 |
+
"transformers_version": "4.47.0"
|
7 |
+
}
|
checkpoint-7200/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-7200/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f21f8b45ee065ed6f618befeb1bfc6692a6bddd53677942d6441d37c9f2deb5
|
3 |
+
size 92299736
|
checkpoint-7200/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1186377a7f21ea6b553cc9792f5a5dee90bb2759021e2938268a524806e4cef
|
3 |
+
size 184602962
|