rebolforces
commited on
Commit
•
78db42d
1
Parent(s):
3225b34
Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
33 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 2124.31 +/- 153.87
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0acfbb6e77a6484f3f28ebd20563aecb17034b8370a7108a0a7c0ccffe0feff8
|
3 |
+
size 129097
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc95c60d820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc95c60d8b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc95c60d940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc95c60d9d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc95c60da60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc95c60daf0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc95c60db80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc95c60dc10>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc95c60dca0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc95c60dd30>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc95c60ddc0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc95c60ec00>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1663153842.0674345,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2xhcGxhY2UvbWFtYmFmb3JnZS9lbnZzL3B5dGhvbjM5L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvaG9tZS9sYXBsYWNlL21hbWJhZm9yZ2UvZW52cy9weXRob24zOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANsXXz8oIAM+rO4DP5hsCkC71pg/eMbvP5NaJj99OZm/dHLbvi1Bor9stOg/Mg4mv/OwSr8lhJw/hDCKv1+Pmb58IA++AEEaP9ilJD/17KM8p5z/vpgp87+73KM/PW6yvpLEgb/vrgk/r4yVPq4gIj/fb58/pzOEPZTtDj+GSN0+u4HSP/R/6L+52kc/9E4nvyVsED+jznA/vPBUv5+0nT/KQMI+5DAJwJHdUb8IVU0+dj23P1XwnTxVbq6+LXsEvodmG756q/A/Kz11Pnkku7+SxIG/764JP6+MlT7CHMq/QyXxPulpiD7CUtE+TjusPxaCnz+c5a4/OJyBPvOkZ79MA4M+PGsVwFlKsz+8uzI+c56vv0osWD4iO02/TyUrv7NDYr9gfWy+ZwwlP43x+jsvczo+G2INwEsckT+lg/69ksSBv++uCT+vjJU+riAiP/IF2D8XHVc/gfmVvpGVBj+mPCQ/TSBIvxnuoD+PNJS+PfAhv2UnA0AyAY2/Xiz5PdFvsD/Zu1q/2Ay9v/sYND9nWD8/quIiPx67gr7I7TDApbhFv7rxmT/yLGc+hJUXv5LEgb/R/u2/r4yVPsIcyr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAu8bC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOQoBPgAAAAA3QP6/AAAAAEnSljsAAAAAOITfPwAAAACoBLy9AAAAACvJ+j8AAAAAERuEPAAAAADiOtu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALgWNtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGVvoLwAAAAAg37uvwAAAAD5JHm9AAAAAENJ+z8AAAAA8uCmvQAAAAAH0vk/AAAAADb8Xz0AAAAAxOnavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEFjlDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDU+ee9AAAAAPPN9b8AAAAAIrd0PQAAAAAV0P8/AAAAAJbYy70AAAAAmGb9PwAAAACFkPO9AAAAAOzX878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIwnk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADb/fvQAAAABEoOu/AAAAAAnkCr4AAAAAF6j5PwAAAAB71C49AAAAAMAU8z8AAAAAjX0RvgAAAACP0tq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKCMMSDh99eMAWyUTegDjAF0lEdA30XRT6zmfXV9lChoBkdAna+c4xUNrmgHTegDaAhHQN9F3pzYEnt1fZQoaAZHQJ8xF3Sro4doB03oA2gIR0DfRlDMnqmkdX2UKGgGR0CdgfkPczqKaAdN6ANoCEdA30dARFI/aHV9lChoBkdAoGu4uoP07WgHTegDaAhHQN9HnIbfgrJ1fZQoaAZHQKCT7jxTbWVoB03oA2gIR0DfR6mEdvKmdX2UKGgGR0Cfr0+CbtqpaAdN6ANoCEdA30gU2G7Bf3V9lChoBkdAoPtfXmNipmgHTegDaAhHQN9I+2+TNdJ1fZQoaAZHQJ8+diz9jwxoB03oA2gIR0DfSVfR2KVIdX2UKGgGR0ChEBJc5bQkaAdN6ANoCEdA30lmA0Kqn3V9lChoBkdAoSWsUj9n9WgHTegDaAhHQN9J0KcVgx91fZQoaAZHQKGH91YhdMVoB03oA2gIR0DfSrF5Z8rqdX2UKGgGR0Chb7DRlYlqaAdN6ANoCEdA30sTwaBI4HV9lChoBkdAoQAZKWcBl2gHTegDaAhHQN9LIltoBaN1fZQoaAZHQKF+zOgQHzJoB03oA2gIR0DfS5L987ZGdX2UKGgGR0CgG83HBDXwaAdN6ANoCEdA30xzNwR5DHV9lChoBkdAoNhSYsunM2gHTegDaAhHQN9Mz33YcvN1fZQoaAZHQJs/HVy3kPtoB03oA2gIR0DfTN94s3AEdX2UKGgGR0CgHxdfkWAPaAdN6ANoCEdA301Jde6ZpnV9lChoBkdAoG3IAn2IwmgHTegDaAhHQN9OLEdJaq11fZQoaAZHQJ+bVoUSIxhoB03oA2gIR0DfToek2xY8dX2UKGgGR0CgIv0KzAvdaAdN6ANoCEdA306U6+36RHV9lChoBkdAoR1xzkp7TmgHTegDaAhHQN9PBhJyyUt1fZQoaAZHQKDtyrGR3eNoB03oA2gIR0DfT+RJpWWAdX2UKGgGR0ChN1nTAnD0aAdN6ANoCEdA31BEDDjzZ3V9lChoBkdAoD6MiOearmgHTegDaAhHQN9QUFBMSK51fZQoaAZHQKEhpYI0IkZoB03oA2gIR0DfUMRwkxATdX2UKGgGR0CdiZ9vCMxXaAdN6ANoCEdA31GuKfWc0HV9lChoBkdAnRV6jnFHa2gHTegDaAhHQN9SDt0/4Zd1fZQoaAZHQJ5R7y6MBIZoB03oA2gIR0DfUhz2bobGdX2UKGgGR0CcpkOUMXrMaAdN6ANoCEdA31KMP0Zm7XV9lChoBkdAnyE3KGL1mWgHTegDaAhHQN9TacHryDt1fZQoaAZHQKCb7XVbzK9oB03oA2gIR0DfU8gblzU7dX2UKGgGR0CdHiMOPNmlaAdN6ANoCEdA31PUrMC9y3V9lChoBkdAn+Ve67NB4WgHTegDaAhHQN9UQhHkLhJ1fZQoaAZHQJ0DhvbXYlJoB03oA2gIR0DfVSbyVfNSdX2UKGgGR0CfJ0Iq9XcQaAdN6ANoCEdA31WGFGoaUHV9lChoBkdAoR/Ci/O+qWgHTegDaAhHQN9VknTRYzV1fZQoaAZHQKHCCLR8c+9oB03oA2gIR0DfVgPUmUnpdX2UKGgGR0ChK0Ou7pV0aAdN6ANoCEdA31b5uwX67HV9lChoBkdAoU5tvjwQUmgHTegDaAhHQN9XUPL1VYJ1fZQoaAZHQKAjvJp35etoB03oA2gIR0DfV1x/b0vodX2UKGgGR0CeOyvAXVLBaAdN6ANoCEdA31fMokzGgnV9lChoBkdAoFVihlDneWgHTegDaAhHQN9Ysu0TlDF1fZQoaAZHQKBujIXj2jBoB03oA2gIR0DfWQ0ku6ErdX2UKGgGR0CgA3bBoEjgaAdN6ANoCEdA31kYkleF+XV9lChoBkdAoNjuIO6NEWgHTegDaAhHQN9ZgojKPn11fZQoaAZHQJ8Axxm03OxoB03oA2gIR0DfWmI79ycTdX2UKGgGR0ChVLIod+5OaAdN6ANoCEdA31q7zKcNIHV9lChoBkdAome4q/dqL2gHTegDaAhHQN9ayeGTLW91fZQoaAZHQKGd5e5WilBoB03oA2gIR0DfWz6V3Ux3dX2UKGgGR0CiMSxsl9jPaAdN6ANoCEdA31wjOCXhO3V9lChoBkdAoNjP1zySWGgHTegDaAhHQN9cfNgv1151fZQoaAZHQKF0WgWac7RoB03oA2gIR0DfXIjSeAd5dX2UKGgGR0Cg3aQ/5ckdaAdN6ANoCEdA31z1WykbgnV9lChoBkdAoCY+36Q/5mgHTegDaAhHQN9d0CZF5Od1fZQoaAZHQJ+v/4HoouxoB03oA2gIR0DfXi0uUUwjdX2UKGgGR0Chrt2MsH0LaAdN6ANoCEdA3145B4lhPXV9lChoBkdAoFdutU4rBmgHTegDaAhHQN9ep7FCLMt1fZQoaAZHQKFe6PikwexoB03oA2gIR0DfX47/1g6VdX2UKGgGR0ChV8tbs4T9aAdN6ANoCEdA31/o6ErXlXV9lChoBkdAoVuTebd8A2gHTegDaAhHQN9f8xEjPfN1fZQoaAZHQKF/iXgLqlhoB03oA2gIR0DfYGj2M85kdX2UKGgGR0Cf7D2K2rn1aAdN6ANoCEdA32FPFKCg9XV9lChoBkdAn/FRR/EwWWgHTegDaAhHQN9hptb5dnl1fZQoaAZHQJ8ZapeeFtdoB03oA2gIR0DfYbZ6HCXQdX2UKGgGR0ChcG1DjR2KaAdN6ANoCEdA32Ik5sCT2XV9lChoBkdAoSqGqm0mdGgHTegDaAhHQN9jCBnrY5F1fZQoaAZHQKJFV1cMVlBoB03oA2gIR0DfY2RGqgh9dX2UKGgGR0CiUJwFLWZraAdN6ANoCEdA32NxdH2AXnV9lChoBkdAogPPmV7hN2gHTegDaAhHQN9j2UTcqON1fZQoaAZHQKEgSMDOkcloB03oA2gIR0DfZL+gctGvdX2UKGgGR0CiKJKhlDneaAdN6ANoCEdA32Udq4pc5nV9lChoBkdAoSkJFPSDy2gHTegDaAhHQN9lKgiA2AJ1fZQoaAZHQKIEiM1jy4FoB03oA2gIR0DfZZdiONo8dX2UKGgGR0CfJbHfMwDeaAdN6ANoCEdA32Z2+pwS8XV9lChoBkdAoUWzDhtLtmgHTegDaAhHQN9m2swL3K11fZQoaAZHQJ42flOoHcFoB03oA2gIR0DfZulvMr3CdX2UKGgGR0CgF8BEroW6aAdN6ANoCEdA32dcIre67XV9lChoBkdAoEdSyhSLqGgHTegDaAhHQN9oR4fr8ix1fZQoaAZHQKACGp6yB09oB03oA2gIR0DfaKNWDHwPdX2UKGgGR0ChgVLNOdoWaAdN6ANoCEdA32iwCrcTJ3V9lChoBkdAoJ+p73PAwmgHTegDaAhHQN9pHOjEehh1fZQoaAZHQKLe3itJWeZoB03oA2gIR0DfagOwgTysdX2UKGgGR0CiObkJrtVraAdN6ANoCEdA32pgIXCTEHV9lChoBkdAojaNkH2RJWgHTegDaAhHQN9qa3zUZvV1fZQoaAZHQJ5ZK4Ajps5oB03oA2gIR0DfauagQHzIdX2UKGgGR0ChdGDPv8ZUaAdN6ANoCEdA32vCisny/nV9lChoBkdAoP0X/Pw/gWgHTegDaAhHQN9sHqnrIHV1fZQoaAZHQKCejzbN8mdoB03oA2gIR0DfbC/6YVqOdX2UKGgGR0CbnSx+rlvIaAdN6ANoCEdA32yicpb2UXV9lChoBkdAogvRR64Ue2gHTegDaAhHQN9tjEeIVM51fZQoaAZHQKAAIjQiRnxoB03oA2gIR0Dfbej1WbPQdX2UKGgGR0Chj5P9UCJXaAdN6ANoCEdA3232tm+TNnV9lChoBkdAou8QZ4wAVGgHTegDaAhHQN9uZTxb0OF1fZQoaAZHQKE23Hp8neBoB03oA2gIR0Dfb0ytGNJfdX2UKGgGR0ChwSEsasIWaAdN6ANoCEdA32+lzmOlwnV9lChoBkdAod6uF+NLlGgHTegDaAhHQN9vs2QKa5R1fZQoaAZHQKJ5qBOpKjBoB03oA2gIR0DfcCcL1EmZdX2UKGgGR0Cf+wMPz4DcaAdN6ANoCEdA33D9UyHmBHVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 31250,
|
98 |
+
"n_steps": 16,
|
99 |
+
"gamma": 0.98,
|
100 |
+
"gae_lambda": 0.89,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ea2b22a622f02f092b1bda0736b6c15f9b75027ffe0adab1db5c727e52a2ef7
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b79a8e7bc99824714b940b9a136c5e7f81046d7053d0b824e980ad7c5115874
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.15.57.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Wed Jul 27 02:20:31 UTC 2022
|
2 |
+
Python: 3.9.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.23.1
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc95c60d820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc95c60d8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc95c60d940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc95c60d9d0>", "_build": "<function ActorCriticPolicy._build at 0x7fc95c60da60>", "forward": "<function ActorCriticPolicy.forward at 0x7fc95c60daf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc95c60db80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc95c60dc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc95c60dca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc95c60dd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc95c60ddc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc95c60ec00>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663153842.0674345, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2xhcGxhY2UvbWFtYmFmb3JnZS9lbnZzL3B5dGhvbjM5L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvaG9tZS9sYXBsYWNlL21hbWJhZm9yZ2UvZW52cy9weXRob24zOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANsXXz8oIAM+rO4DP5hsCkC71pg/eMbvP5NaJj99OZm/dHLbvi1Bor9stOg/Mg4mv/OwSr8lhJw/hDCKv1+Pmb58IA++AEEaP9ilJD/17KM8p5z/vpgp87+73KM/PW6yvpLEgb/vrgk/r4yVPq4gIj/fb58/pzOEPZTtDj+GSN0+u4HSP/R/6L+52kc/9E4nvyVsED+jznA/vPBUv5+0nT/KQMI+5DAJwJHdUb8IVU0+dj23P1XwnTxVbq6+LXsEvodmG756q/A/Kz11Pnkku7+SxIG/764JP6+MlT7CHMq/QyXxPulpiD7CUtE+TjusPxaCnz+c5a4/OJyBPvOkZ79MA4M+PGsVwFlKsz+8uzI+c56vv0osWD4iO02/TyUrv7NDYr9gfWy+ZwwlP43x+jsvczo+G2INwEsckT+lg/69ksSBv++uCT+vjJU+riAiP/IF2D8XHVc/gfmVvpGVBj+mPCQ/TSBIvxnuoD+PNJS+PfAhv2UnA0AyAY2/Xiz5PdFvsD/Zu1q/2Ay9v/sYND9nWD8/quIiPx67gr7I7TDApbhFv7rxmT/yLGc+hJUXv5LEgb/R/u2/r4yVPsIcyr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAu8bC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOQoBPgAAAAA3QP6/AAAAAEnSljsAAAAAOITfPwAAAACoBLy9AAAAACvJ+j8AAAAAERuEPAAAAADiOtu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALgWNtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGVvoLwAAAAAg37uvwAAAAD5JHm9AAAAAENJ+z8AAAAA8uCmvQAAAAAH0vk/AAAAADb8Xz0AAAAAxOnavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEFjlDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDU+ee9AAAAAPPN9b8AAAAAIrd0PQAAAAAV0P8/AAAAAJbYy70AAAAAmGb9PwAAAACFkPO9AAAAAOzX878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIwnk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADb/fvQAAAABEoOu/AAAAAAnkCr4AAAAAF6j5PwAAAAB71C49AAAAAMAU8z8AAAAAjX0RvgAAAACP0tq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKCMMSDh99eMAWyUTegDjAF0lEdA30XRT6zmfXV9lChoBkdAna+c4xUNrmgHTegDaAhHQN9F3pzYEnt1fZQoaAZHQJ8xF3Sro4doB03oA2gIR0DfRlDMnqmkdX2UKGgGR0CdgfkPczqKaAdN6ANoCEdA30dARFI/aHV9lChoBkdAoGu4uoP07WgHTegDaAhHQN9HnIbfgrJ1fZQoaAZHQKCT7jxTbWVoB03oA2gIR0DfR6mEdvKmdX2UKGgGR0Cfr0+CbtqpaAdN6ANoCEdA30gU2G7Bf3V9lChoBkdAoPtfXmNipmgHTegDaAhHQN9I+2+TNdJ1fZQoaAZHQJ8+diz9jwxoB03oA2gIR0DfSVfR2KVIdX2UKGgGR0ChEBJc5bQkaAdN6ANoCEdA30lmA0Kqn3V9lChoBkdAoSWsUj9n9WgHTegDaAhHQN9J0KcVgx91fZQoaAZHQKGH91YhdMVoB03oA2gIR0DfSrF5Z8rqdX2UKGgGR0Chb7DRlYlqaAdN6ANoCEdA30sTwaBI4HV9lChoBkdAoQAZKWcBl2gHTegDaAhHQN9LIltoBaN1fZQoaAZHQKF+zOgQHzJoB03oA2gIR0DfS5L987ZGdX2UKGgGR0CgG83HBDXwaAdN6ANoCEdA30xzNwR5DHV9lChoBkdAoNhSYsunM2gHTegDaAhHQN9Mz33YcvN1fZQoaAZHQJs/HVy3kPtoB03oA2gIR0DfTN94s3AEdX2UKGgGR0CgHxdfkWAPaAdN6ANoCEdA301Jde6ZpnV9lChoBkdAoG3IAn2IwmgHTegDaAhHQN9OLEdJaq11fZQoaAZHQJ+bVoUSIxhoB03oA2gIR0DfToek2xY8dX2UKGgGR0CgIv0KzAvdaAdN6ANoCEdA306U6+36RHV9lChoBkdAoR1xzkp7TmgHTegDaAhHQN9PBhJyyUt1fZQoaAZHQKDtyrGR3eNoB03oA2gIR0DfT+RJpWWAdX2UKGgGR0ChN1nTAnD0aAdN6ANoCEdA31BEDDjzZ3V9lChoBkdAoD6MiOearmgHTegDaAhHQN9QUFBMSK51fZQoaAZHQKEhpYI0IkZoB03oA2gIR0DfUMRwkxATdX2UKGgGR0CdiZ9vCMxXaAdN6ANoCEdA31GuKfWc0HV9lChoBkdAnRV6jnFHa2gHTegDaAhHQN9SDt0/4Zd1fZQoaAZHQJ5R7y6MBIZoB03oA2gIR0DfUhz2bobGdX2UKGgGR0CcpkOUMXrMaAdN6ANoCEdA31KMP0Zm7XV9lChoBkdAnyE3KGL1mWgHTegDaAhHQN9TacHryDt1fZQoaAZHQKCb7XVbzK9oB03oA2gIR0DfU8gblzU7dX2UKGgGR0CdHiMOPNmlaAdN6ANoCEdA31PUrMC9y3V9lChoBkdAn+Ve67NB4WgHTegDaAhHQN9UQhHkLhJ1fZQoaAZHQJ0DhvbXYlJoB03oA2gIR0DfVSbyVfNSdX2UKGgGR0CfJ0Iq9XcQaAdN6ANoCEdA31WGFGoaUHV9lChoBkdAoR/Ci/O+qWgHTegDaAhHQN9VknTRYzV1fZQoaAZHQKHCCLR8c+9oB03oA2gIR0DfVgPUmUnpdX2UKGgGR0ChK0Ou7pV0aAdN6ANoCEdA31b5uwX67HV9lChoBkdAoU5tvjwQUmgHTegDaAhHQN9XUPL1VYJ1fZQoaAZHQKAjvJp35etoB03oA2gIR0DfV1x/b0vodX2UKGgGR0CeOyvAXVLBaAdN6ANoCEdA31fMokzGgnV9lChoBkdAoFVihlDneWgHTegDaAhHQN9Ysu0TlDF1fZQoaAZHQKBujIXj2jBoB03oA2gIR0DfWQ0ku6ErdX2UKGgGR0CgA3bBoEjgaAdN6ANoCEdA31kYkleF+XV9lChoBkdAoNjuIO6NEWgHTegDaAhHQN9ZgojKPn11fZQoaAZHQJ8Axxm03OxoB03oA2gIR0DfWmI79ycTdX2UKGgGR0ChVLIod+5OaAdN6ANoCEdA31q7zKcNIHV9lChoBkdAome4q/dqL2gHTegDaAhHQN9ayeGTLW91fZQoaAZHQKGd5e5WilBoB03oA2gIR0DfWz6V3Ux3dX2UKGgGR0CiMSxsl9jPaAdN6ANoCEdA31wjOCXhO3V9lChoBkdAoNjP1zySWGgHTegDaAhHQN9cfNgv1151fZQoaAZHQKF0WgWac7RoB03oA2gIR0DfXIjSeAd5dX2UKGgGR0Cg3aQ/5ckdaAdN6ANoCEdA31z1WykbgnV9lChoBkdAoCY+36Q/5mgHTegDaAhHQN9d0CZF5Od1fZQoaAZHQJ+v/4HoouxoB03oA2gIR0DfXi0uUUwjdX2UKGgGR0Chrt2MsH0LaAdN6ANoCEdA3145B4lhPXV9lChoBkdAoFdutU4rBmgHTegDaAhHQN9ep7FCLMt1fZQoaAZHQKFe6PikwexoB03oA2gIR0DfX47/1g6VdX2UKGgGR0ChV8tbs4T9aAdN6ANoCEdA31/o6ErXlXV9lChoBkdAoVuTebd8A2gHTegDaAhHQN9f8xEjPfN1fZQoaAZHQKF/iXgLqlhoB03oA2gIR0DfYGj2M85kdX2UKGgGR0Cf7D2K2rn1aAdN6ANoCEdA32FPFKCg9XV9lChoBkdAn/FRR/EwWWgHTegDaAhHQN9hptb5dnl1fZQoaAZHQJ8ZapeeFtdoB03oA2gIR0DfYbZ6HCXQdX2UKGgGR0ChcG1DjR2KaAdN6ANoCEdA32Ik5sCT2XV9lChoBkdAoSqGqm0mdGgHTegDaAhHQN9jCBnrY5F1fZQoaAZHQKJFV1cMVlBoB03oA2gIR0DfY2RGqgh9dX2UKGgGR0CiUJwFLWZraAdN6ANoCEdA32NxdH2AXnV9lChoBkdAogPPmV7hN2gHTegDaAhHQN9j2UTcqON1fZQoaAZHQKEgSMDOkcloB03oA2gIR0DfZL+gctGvdX2UKGgGR0CiKJKhlDneaAdN6ANoCEdA32Udq4pc5nV9lChoBkdAoSkJFPSDy2gHTegDaAhHQN9lKgiA2AJ1fZQoaAZHQKIEiM1jy4FoB03oA2gIR0DfZZdiONo8dX2UKGgGR0CfJbHfMwDeaAdN6ANoCEdA32Z2+pwS8XV9lChoBkdAoUWzDhtLtmgHTegDaAhHQN9m2swL3K11fZQoaAZHQJ42flOoHcFoB03oA2gIR0DfZulvMr3CdX2UKGgGR0CgF8BEroW6aAdN6ANoCEdA32dcIre67XV9lChoBkdAoEdSyhSLqGgHTegDaAhHQN9oR4fr8ix1fZQoaAZHQKACGp6yB09oB03oA2gIR0DfaKNWDHwPdX2UKGgGR0ChgVLNOdoWaAdN6ANoCEdA32iwCrcTJ3V9lChoBkdAoJ+p73PAwmgHTegDaAhHQN9pHOjEehh1fZQoaAZHQKLe3itJWeZoB03oA2gIR0DfagOwgTysdX2UKGgGR0CiObkJrtVraAdN6ANoCEdA32pgIXCTEHV9lChoBkdAojaNkH2RJWgHTegDaAhHQN9qa3zUZvV1fZQoaAZHQJ5ZK4Ajps5oB03oA2gIR0DfauagQHzIdX2UKGgGR0ChdGDPv8ZUaAdN6ANoCEdA32vCisny/nV9lChoBkdAoP0X/Pw/gWgHTegDaAhHQN9sHqnrIHV1fZQoaAZHQKCejzbN8mdoB03oA2gIR0DfbC/6YVqOdX2UKGgGR0CbnSx+rlvIaAdN6ANoCEdA32yicpb2UXV9lChoBkdAogvRR64Ue2gHTegDaAhHQN9tjEeIVM51fZQoaAZHQKAAIjQiRnxoB03oA2gIR0Dfbej1WbPQdX2UKGgGR0Chj5P9UCJXaAdN6ANoCEdA3232tm+TNnV9lChoBkdAou8QZ4wAVGgHTegDaAhHQN9uZTxb0OF1fZQoaAZHQKE23Hp8neBoB03oA2gIR0Dfb0ytGNJfdX2UKGgGR0ChwSEsasIWaAdN6ANoCEdA32+lzmOlwnV9lChoBkdAod6uF+NLlGgHTegDaAhHQN9vs2QKa5R1fZQoaAZHQKJ5qBOpKjBoB03oA2gIR0DfcCcL1EmZdX2UKGgGR0Cf+wMPz4DcaAdN6ANoCEdA33D9UyHmBHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 16, "gamma": 0.98, "gae_lambda": 0.89, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.57.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Wed Jul 27 02:20:31 UTC 2022", "Python": "3.9.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.23.1", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19803e7e21a9cc756c6a8bebf9c3f3c4b8b3766d9177aaa408251a89f53be303
|
3 |
+
size 1317748
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2124.3068256933375, "std_reward": 153.8673231558242, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-15T10:54:47.175415"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1345cfc18c0c2e308171fb78c88f7fcc41430cd82382a5bd4408b9839da9667f
|
3 |
+
size 2218
|