rebolforces commited on
Commit
78db42d
1 Parent(s): 3225b34

Initial commit

Browse files
.gitattributes CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
33
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 2124.31 +/- 153.87
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: AntBulletEnv-v0
20
+ type: AntBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **AntBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0acfbb6e77a6484f3f28ebd20563aecb17034b8370a7108a0a7c0ccffe0feff8
3
+ size 129097
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc95c60d820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc95c60d8b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc95c60d940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc95c60d9d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc95c60da60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc95c60daf0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc95c60db80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc95c60dc10>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc95c60dca0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc95c60dd30>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc95c60ddc0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7fc95c60ec00>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1663153842.0674345,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2xhcGxhY2UvbWFtYmFmb3JnZS9lbnZzL3B5dGhvbjM5L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvaG9tZS9sYXBsYWNlL21hbWJhZm9yZ2UvZW52cy9weXRob24zOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANsXXz8oIAM+rO4DP5hsCkC71pg/eMbvP5NaJj99OZm/dHLbvi1Bor9stOg/Mg4mv/OwSr8lhJw/hDCKv1+Pmb58IA++AEEaP9ilJD/17KM8p5z/vpgp87+73KM/PW6yvpLEgb/vrgk/r4yVPq4gIj/fb58/pzOEPZTtDj+GSN0+u4HSP/R/6L+52kc/9E4nvyVsED+jznA/vPBUv5+0nT/KQMI+5DAJwJHdUb8IVU0+dj23P1XwnTxVbq6+LXsEvodmG756q/A/Kz11Pnkku7+SxIG/764JP6+MlT7CHMq/QyXxPulpiD7CUtE+TjusPxaCnz+c5a4/OJyBPvOkZ79MA4M+PGsVwFlKsz+8uzI+c56vv0osWD4iO02/TyUrv7NDYr9gfWy+ZwwlP43x+jsvczo+G2INwEsckT+lg/69ksSBv++uCT+vjJU+riAiP/IF2D8XHVc/gfmVvpGVBj+mPCQ/TSBIvxnuoD+PNJS+PfAhv2UnA0AyAY2/Xiz5PdFvsD/Zu1q/2Ay9v/sYND9nWD8/quIiPx67gr7I7TDApbhFv7rxmT/yLGc+hJUXv5LEgb/R/u2/r4yVPsIcyr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAu8bC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOQoBPgAAAAA3QP6/AAAAAEnSljsAAAAAOITfPwAAAACoBLy9AAAAACvJ+j8AAAAAERuEPAAAAADiOtu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALgWNtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGVvoLwAAAAAg37uvwAAAAD5JHm9AAAAAENJ+z8AAAAA8uCmvQAAAAAH0vk/AAAAADb8Xz0AAAAAxOnavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEFjlDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDU+ee9AAAAAPPN9b8AAAAAIrd0PQAAAAAV0P8/AAAAAJbYy70AAAAAmGb9PwAAAACFkPO9AAAAAOzX878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIwnk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADb/fvQAAAABEoOu/AAAAAAnkCr4AAAAAF6j5PwAAAAB71C49AAAAAMAU8z8AAAAAjX0RvgAAAACP0tq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKCMMSDh99eMAWyUTegDjAF0lEdA30XRT6zmfXV9lChoBkdAna+c4xUNrmgHTegDaAhHQN9F3pzYEnt1fZQoaAZHQJ8xF3Sro4doB03oA2gIR0DfRlDMnqmkdX2UKGgGR0CdgfkPczqKaAdN6ANoCEdA30dARFI/aHV9lChoBkdAoGu4uoP07WgHTegDaAhHQN9HnIbfgrJ1fZQoaAZHQKCT7jxTbWVoB03oA2gIR0DfR6mEdvKmdX2UKGgGR0Cfr0+CbtqpaAdN6ANoCEdA30gU2G7Bf3V9lChoBkdAoPtfXmNipmgHTegDaAhHQN9I+2+TNdJ1fZQoaAZHQJ8+diz9jwxoB03oA2gIR0DfSVfR2KVIdX2UKGgGR0ChEBJc5bQkaAdN6ANoCEdA30lmA0Kqn3V9lChoBkdAoSWsUj9n9WgHTegDaAhHQN9J0KcVgx91fZQoaAZHQKGH91YhdMVoB03oA2gIR0DfSrF5Z8rqdX2UKGgGR0Chb7DRlYlqaAdN6ANoCEdA30sTwaBI4HV9lChoBkdAoQAZKWcBl2gHTegDaAhHQN9LIltoBaN1fZQoaAZHQKF+zOgQHzJoB03oA2gIR0DfS5L987ZGdX2UKGgGR0CgG83HBDXwaAdN6ANoCEdA30xzNwR5DHV9lChoBkdAoNhSYsunM2gHTegDaAhHQN9Mz33YcvN1fZQoaAZHQJs/HVy3kPtoB03oA2gIR0DfTN94s3AEdX2UKGgGR0CgHxdfkWAPaAdN6ANoCEdA301Jde6ZpnV9lChoBkdAoG3IAn2IwmgHTegDaAhHQN9OLEdJaq11fZQoaAZHQJ+bVoUSIxhoB03oA2gIR0DfToek2xY8dX2UKGgGR0CgIv0KzAvdaAdN6ANoCEdA306U6+36RHV9lChoBkdAoR1xzkp7TmgHTegDaAhHQN9PBhJyyUt1fZQoaAZHQKDtyrGR3eNoB03oA2gIR0DfT+RJpWWAdX2UKGgGR0ChN1nTAnD0aAdN6ANoCEdA31BEDDjzZ3V9lChoBkdAoD6MiOearmgHTegDaAhHQN9QUFBMSK51fZQoaAZHQKEhpYI0IkZoB03oA2gIR0DfUMRwkxATdX2UKGgGR0CdiZ9vCMxXaAdN6ANoCEdA31GuKfWc0HV9lChoBkdAnRV6jnFHa2gHTegDaAhHQN9SDt0/4Zd1fZQoaAZHQJ5R7y6MBIZoB03oA2gIR0DfUhz2bobGdX2UKGgGR0CcpkOUMXrMaAdN6ANoCEdA31KMP0Zm7XV9lChoBkdAnyE3KGL1mWgHTegDaAhHQN9TacHryDt1fZQoaAZHQKCb7XVbzK9oB03oA2gIR0DfU8gblzU7dX2UKGgGR0CdHiMOPNmlaAdN6ANoCEdA31PUrMC9y3V9lChoBkdAn+Ve67NB4WgHTegDaAhHQN9UQhHkLhJ1fZQoaAZHQJ0DhvbXYlJoB03oA2gIR0DfVSbyVfNSdX2UKGgGR0CfJ0Iq9XcQaAdN6ANoCEdA31WGFGoaUHV9lChoBkdAoR/Ci/O+qWgHTegDaAhHQN9VknTRYzV1fZQoaAZHQKHCCLR8c+9oB03oA2gIR0DfVgPUmUnpdX2UKGgGR0ChK0Ou7pV0aAdN6ANoCEdA31b5uwX67HV9lChoBkdAoU5tvjwQUmgHTegDaAhHQN9XUPL1VYJ1fZQoaAZHQKAjvJp35etoB03oA2gIR0DfV1x/b0vodX2UKGgGR0CeOyvAXVLBaAdN6ANoCEdA31fMokzGgnV9lChoBkdAoFVihlDneWgHTegDaAhHQN9Ysu0TlDF1fZQoaAZHQKBujIXj2jBoB03oA2gIR0DfWQ0ku6ErdX2UKGgGR0CgA3bBoEjgaAdN6ANoCEdA31kYkleF+XV9lChoBkdAoNjuIO6NEWgHTegDaAhHQN9ZgojKPn11fZQoaAZHQJ8Axxm03OxoB03oA2gIR0DfWmI79ycTdX2UKGgGR0ChVLIod+5OaAdN6ANoCEdA31q7zKcNIHV9lChoBkdAome4q/dqL2gHTegDaAhHQN9ayeGTLW91fZQoaAZHQKGd5e5WilBoB03oA2gIR0DfWz6V3Ux3dX2UKGgGR0CiMSxsl9jPaAdN6ANoCEdA31wjOCXhO3V9lChoBkdAoNjP1zySWGgHTegDaAhHQN9cfNgv1151fZQoaAZHQKF0WgWac7RoB03oA2gIR0DfXIjSeAd5dX2UKGgGR0Cg3aQ/5ckdaAdN6ANoCEdA31z1WykbgnV9lChoBkdAoCY+36Q/5mgHTegDaAhHQN9d0CZF5Od1fZQoaAZHQJ+v/4HoouxoB03oA2gIR0DfXi0uUUwjdX2UKGgGR0Chrt2MsH0LaAdN6ANoCEdA3145B4lhPXV9lChoBkdAoFdutU4rBmgHTegDaAhHQN9ep7FCLMt1fZQoaAZHQKFe6PikwexoB03oA2gIR0DfX47/1g6VdX2UKGgGR0ChV8tbs4T9aAdN6ANoCEdA31/o6ErXlXV9lChoBkdAoVuTebd8A2gHTegDaAhHQN9f8xEjPfN1fZQoaAZHQKF/iXgLqlhoB03oA2gIR0DfYGj2M85kdX2UKGgGR0Cf7D2K2rn1aAdN6ANoCEdA32FPFKCg9XV9lChoBkdAn/FRR/EwWWgHTegDaAhHQN9hptb5dnl1fZQoaAZHQJ8ZapeeFtdoB03oA2gIR0DfYbZ6HCXQdX2UKGgGR0ChcG1DjR2KaAdN6ANoCEdA32Ik5sCT2XV9lChoBkdAoSqGqm0mdGgHTegDaAhHQN9jCBnrY5F1fZQoaAZHQKJFV1cMVlBoB03oA2gIR0DfY2RGqgh9dX2UKGgGR0CiUJwFLWZraAdN6ANoCEdA32NxdH2AXnV9lChoBkdAogPPmV7hN2gHTegDaAhHQN9j2UTcqON1fZQoaAZHQKEgSMDOkcloB03oA2gIR0DfZL+gctGvdX2UKGgGR0CiKJKhlDneaAdN6ANoCEdA32Udq4pc5nV9lChoBkdAoSkJFPSDy2gHTegDaAhHQN9lKgiA2AJ1fZQoaAZHQKIEiM1jy4FoB03oA2gIR0DfZZdiONo8dX2UKGgGR0CfJbHfMwDeaAdN6ANoCEdA32Z2+pwS8XV9lChoBkdAoUWzDhtLtmgHTegDaAhHQN9m2swL3K11fZQoaAZHQJ42flOoHcFoB03oA2gIR0DfZulvMr3CdX2UKGgGR0CgF8BEroW6aAdN6ANoCEdA32dcIre67XV9lChoBkdAoEdSyhSLqGgHTegDaAhHQN9oR4fr8ix1fZQoaAZHQKACGp6yB09oB03oA2gIR0DfaKNWDHwPdX2UKGgGR0ChgVLNOdoWaAdN6ANoCEdA32iwCrcTJ3V9lChoBkdAoJ+p73PAwmgHTegDaAhHQN9pHOjEehh1fZQoaAZHQKLe3itJWeZoB03oA2gIR0DfagOwgTysdX2UKGgGR0CiObkJrtVraAdN6ANoCEdA32pgIXCTEHV9lChoBkdAojaNkH2RJWgHTegDaAhHQN9qa3zUZvV1fZQoaAZHQJ5ZK4Ajps5oB03oA2gIR0DfauagQHzIdX2UKGgGR0ChdGDPv8ZUaAdN6ANoCEdA32vCisny/nV9lChoBkdAoP0X/Pw/gWgHTegDaAhHQN9sHqnrIHV1fZQoaAZHQKCejzbN8mdoB03oA2gIR0DfbC/6YVqOdX2UKGgGR0CbnSx+rlvIaAdN6ANoCEdA32yicpb2UXV9lChoBkdAogvRR64Ue2gHTegDaAhHQN9tjEeIVM51fZQoaAZHQKAAIjQiRnxoB03oA2gIR0Dfbej1WbPQdX2UKGgGR0Chj5P9UCJXaAdN6ANoCEdA3232tm+TNnV9lChoBkdAou8QZ4wAVGgHTegDaAhHQN9uZTxb0OF1fZQoaAZHQKE23Hp8neBoB03oA2gIR0Dfb0ytGNJfdX2UKGgGR0ChwSEsasIWaAdN6ANoCEdA32+lzmOlwnV9lChoBkdAod6uF+NLlGgHTegDaAhHQN9vs2QKa5R1fZQoaAZHQKJ5qBOpKjBoB03oA2gIR0DfcCcL1EmZdX2UKGgGR0Cf+wMPz4DcaAdN6ANoCEdA33D9UyHmBHVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 31250,
98
+ "n_steps": 16,
99
+ "gamma": 0.98,
100
+ "gae_lambda": 0.89,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ea2b22a622f02f092b1bda0736b6c15f9b75027ffe0adab1db5c727e52a2ef7
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b79a8e7bc99824714b940b9a136c5e7f81046d7053d0b824e980ad7c5115874
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.57.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Wed Jul 27 02:20:31 UTC 2022
2
+ Python: 3.9.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.1
5
+ GPU Enabled: True
6
+ Numpy: 1.23.1
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc95c60d820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc95c60d8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc95c60d940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc95c60d9d0>", "_build": "<function ActorCriticPolicy._build at 0x7fc95c60da60>", "forward": "<function ActorCriticPolicy.forward at 0x7fc95c60daf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc95c60db80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc95c60dc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc95c60dca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc95c60dd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc95c60ddc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc95c60ec00>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663153842.0674345, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2xhcGxhY2UvbWFtYmFmb3JnZS9lbnZzL3B5dGhvbjM5L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvaG9tZS9sYXBsYWNlL21hbWJhZm9yZ2UvZW52cy9weXRob24zOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANsXXz8oIAM+rO4DP5hsCkC71pg/eMbvP5NaJj99OZm/dHLbvi1Bor9stOg/Mg4mv/OwSr8lhJw/hDCKv1+Pmb58IA++AEEaP9ilJD/17KM8p5z/vpgp87+73KM/PW6yvpLEgb/vrgk/r4yVPq4gIj/fb58/pzOEPZTtDj+GSN0+u4HSP/R/6L+52kc/9E4nvyVsED+jznA/vPBUv5+0nT/KQMI+5DAJwJHdUb8IVU0+dj23P1XwnTxVbq6+LXsEvodmG756q/A/Kz11Pnkku7+SxIG/764JP6+MlT7CHMq/QyXxPulpiD7CUtE+TjusPxaCnz+c5a4/OJyBPvOkZ79MA4M+PGsVwFlKsz+8uzI+c56vv0osWD4iO02/TyUrv7NDYr9gfWy+ZwwlP43x+jsvczo+G2INwEsckT+lg/69ksSBv++uCT+vjJU+riAiP/IF2D8XHVc/gfmVvpGVBj+mPCQ/TSBIvxnuoD+PNJS+PfAhv2UnA0AyAY2/Xiz5PdFvsD/Zu1q/2Ay9v/sYND9nWD8/quIiPx67gr7I7TDApbhFv7rxmT/yLGc+hJUXv5LEgb/R/u2/r4yVPsIcyr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAu8bC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOQoBPgAAAAA3QP6/AAAAAEnSljsAAAAAOITfPwAAAACoBLy9AAAAACvJ+j8AAAAAERuEPAAAAADiOtu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALgWNtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGVvoLwAAAAAg37uvwAAAAD5JHm9AAAAAENJ+z8AAAAA8uCmvQAAAAAH0vk/AAAAADb8Xz0AAAAAxOnavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEFjlDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDU+ee9AAAAAPPN9b8AAAAAIrd0PQAAAAAV0P8/AAAAAJbYy70AAAAAmGb9PwAAAACFkPO9AAAAAOzX878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIwnk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADb/fvQAAAABEoOu/AAAAAAnkCr4AAAAAF6j5PwAAAAB71C49AAAAAMAU8z8AAAAAjX0RvgAAAACP0tq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKCMMSDh99eMAWyUTegDjAF0lEdA30XRT6zmfXV9lChoBkdAna+c4xUNrmgHTegDaAhHQN9F3pzYEnt1fZQoaAZHQJ8xF3Sro4doB03oA2gIR0DfRlDMnqmkdX2UKGgGR0CdgfkPczqKaAdN6ANoCEdA30dARFI/aHV9lChoBkdAoGu4uoP07WgHTegDaAhHQN9HnIbfgrJ1fZQoaAZHQKCT7jxTbWVoB03oA2gIR0DfR6mEdvKmdX2UKGgGR0Cfr0+CbtqpaAdN6ANoCEdA30gU2G7Bf3V9lChoBkdAoPtfXmNipmgHTegDaAhHQN9I+2+TNdJ1fZQoaAZHQJ8+diz9jwxoB03oA2gIR0DfSVfR2KVIdX2UKGgGR0ChEBJc5bQkaAdN6ANoCEdA30lmA0Kqn3V9lChoBkdAoSWsUj9n9WgHTegDaAhHQN9J0KcVgx91fZQoaAZHQKGH91YhdMVoB03oA2gIR0DfSrF5Z8rqdX2UKGgGR0Chb7DRlYlqaAdN6ANoCEdA30sTwaBI4HV9lChoBkdAoQAZKWcBl2gHTegDaAhHQN9LIltoBaN1fZQoaAZHQKF+zOgQHzJoB03oA2gIR0DfS5L987ZGdX2UKGgGR0CgG83HBDXwaAdN6ANoCEdA30xzNwR5DHV9lChoBkdAoNhSYsunM2gHTegDaAhHQN9Mz33YcvN1fZQoaAZHQJs/HVy3kPtoB03oA2gIR0DfTN94s3AEdX2UKGgGR0CgHxdfkWAPaAdN6ANoCEdA301Jde6ZpnV9lChoBkdAoG3IAn2IwmgHTegDaAhHQN9OLEdJaq11fZQoaAZHQJ+bVoUSIxhoB03oA2gIR0DfToek2xY8dX2UKGgGR0CgIv0KzAvdaAdN6ANoCEdA306U6+36RHV9lChoBkdAoR1xzkp7TmgHTegDaAhHQN9PBhJyyUt1fZQoaAZHQKDtyrGR3eNoB03oA2gIR0DfT+RJpWWAdX2UKGgGR0ChN1nTAnD0aAdN6ANoCEdA31BEDDjzZ3V9lChoBkdAoD6MiOearmgHTegDaAhHQN9QUFBMSK51fZQoaAZHQKEhpYI0IkZoB03oA2gIR0DfUMRwkxATdX2UKGgGR0CdiZ9vCMxXaAdN6ANoCEdA31GuKfWc0HV9lChoBkdAnRV6jnFHa2gHTegDaAhHQN9SDt0/4Zd1fZQoaAZHQJ5R7y6MBIZoB03oA2gIR0DfUhz2bobGdX2UKGgGR0CcpkOUMXrMaAdN6ANoCEdA31KMP0Zm7XV9lChoBkdAnyE3KGL1mWgHTegDaAhHQN9TacHryDt1fZQoaAZHQKCb7XVbzK9oB03oA2gIR0DfU8gblzU7dX2UKGgGR0CdHiMOPNmlaAdN6ANoCEdA31PUrMC9y3V9lChoBkdAn+Ve67NB4WgHTegDaAhHQN9UQhHkLhJ1fZQoaAZHQJ0DhvbXYlJoB03oA2gIR0DfVSbyVfNSdX2UKGgGR0CfJ0Iq9XcQaAdN6ANoCEdA31WGFGoaUHV9lChoBkdAoR/Ci/O+qWgHTegDaAhHQN9VknTRYzV1fZQoaAZHQKHCCLR8c+9oB03oA2gIR0DfVgPUmUnpdX2UKGgGR0ChK0Ou7pV0aAdN6ANoCEdA31b5uwX67HV9lChoBkdAoU5tvjwQUmgHTegDaAhHQN9XUPL1VYJ1fZQoaAZHQKAjvJp35etoB03oA2gIR0DfV1x/b0vodX2UKGgGR0CeOyvAXVLBaAdN6ANoCEdA31fMokzGgnV9lChoBkdAoFVihlDneWgHTegDaAhHQN9Ysu0TlDF1fZQoaAZHQKBujIXj2jBoB03oA2gIR0DfWQ0ku6ErdX2UKGgGR0CgA3bBoEjgaAdN6ANoCEdA31kYkleF+XV9lChoBkdAoNjuIO6NEWgHTegDaAhHQN9ZgojKPn11fZQoaAZHQJ8Axxm03OxoB03oA2gIR0DfWmI79ycTdX2UKGgGR0ChVLIod+5OaAdN6ANoCEdA31q7zKcNIHV9lChoBkdAome4q/dqL2gHTegDaAhHQN9ayeGTLW91fZQoaAZHQKGd5e5WilBoB03oA2gIR0DfWz6V3Ux3dX2UKGgGR0CiMSxsl9jPaAdN6ANoCEdA31wjOCXhO3V9lChoBkdAoNjP1zySWGgHTegDaAhHQN9cfNgv1151fZQoaAZHQKF0WgWac7RoB03oA2gIR0DfXIjSeAd5dX2UKGgGR0Cg3aQ/5ckdaAdN6ANoCEdA31z1WykbgnV9lChoBkdAoCY+36Q/5mgHTegDaAhHQN9d0CZF5Od1fZQoaAZHQJ+v/4HoouxoB03oA2gIR0DfXi0uUUwjdX2UKGgGR0Chrt2MsH0LaAdN6ANoCEdA3145B4lhPXV9lChoBkdAoFdutU4rBmgHTegDaAhHQN9ep7FCLMt1fZQoaAZHQKFe6PikwexoB03oA2gIR0DfX47/1g6VdX2UKGgGR0ChV8tbs4T9aAdN6ANoCEdA31/o6ErXlXV9lChoBkdAoVuTebd8A2gHTegDaAhHQN9f8xEjPfN1fZQoaAZHQKF/iXgLqlhoB03oA2gIR0DfYGj2M85kdX2UKGgGR0Cf7D2K2rn1aAdN6ANoCEdA32FPFKCg9XV9lChoBkdAn/FRR/EwWWgHTegDaAhHQN9hptb5dnl1fZQoaAZHQJ8ZapeeFtdoB03oA2gIR0DfYbZ6HCXQdX2UKGgGR0ChcG1DjR2KaAdN6ANoCEdA32Ik5sCT2XV9lChoBkdAoSqGqm0mdGgHTegDaAhHQN9jCBnrY5F1fZQoaAZHQKJFV1cMVlBoB03oA2gIR0DfY2RGqgh9dX2UKGgGR0CiUJwFLWZraAdN6ANoCEdA32NxdH2AXnV9lChoBkdAogPPmV7hN2gHTegDaAhHQN9j2UTcqON1fZQoaAZHQKEgSMDOkcloB03oA2gIR0DfZL+gctGvdX2UKGgGR0CiKJKhlDneaAdN6ANoCEdA32Udq4pc5nV9lChoBkdAoSkJFPSDy2gHTegDaAhHQN9lKgiA2AJ1fZQoaAZHQKIEiM1jy4FoB03oA2gIR0DfZZdiONo8dX2UKGgGR0CfJbHfMwDeaAdN6ANoCEdA32Z2+pwS8XV9lChoBkdAoUWzDhtLtmgHTegDaAhHQN9m2swL3K11fZQoaAZHQJ42flOoHcFoB03oA2gIR0DfZulvMr3CdX2UKGgGR0CgF8BEroW6aAdN6ANoCEdA32dcIre67XV9lChoBkdAoEdSyhSLqGgHTegDaAhHQN9oR4fr8ix1fZQoaAZHQKACGp6yB09oB03oA2gIR0DfaKNWDHwPdX2UKGgGR0ChgVLNOdoWaAdN6ANoCEdA32iwCrcTJ3V9lChoBkdAoJ+p73PAwmgHTegDaAhHQN9pHOjEehh1fZQoaAZHQKLe3itJWeZoB03oA2gIR0DfagOwgTysdX2UKGgGR0CiObkJrtVraAdN6ANoCEdA32pgIXCTEHV9lChoBkdAojaNkH2RJWgHTegDaAhHQN9qa3zUZvV1fZQoaAZHQJ5ZK4Ajps5oB03oA2gIR0DfauagQHzIdX2UKGgGR0ChdGDPv8ZUaAdN6ANoCEdA32vCisny/nV9lChoBkdAoP0X/Pw/gWgHTegDaAhHQN9sHqnrIHV1fZQoaAZHQKCejzbN8mdoB03oA2gIR0DfbC/6YVqOdX2UKGgGR0CbnSx+rlvIaAdN6ANoCEdA32yicpb2UXV9lChoBkdAogvRR64Ue2gHTegDaAhHQN9tjEeIVM51fZQoaAZHQKAAIjQiRnxoB03oA2gIR0Dfbej1WbPQdX2UKGgGR0Chj5P9UCJXaAdN6ANoCEdA3232tm+TNnV9lChoBkdAou8QZ4wAVGgHTegDaAhHQN9uZTxb0OF1fZQoaAZHQKE23Hp8neBoB03oA2gIR0Dfb0ytGNJfdX2UKGgGR0ChwSEsasIWaAdN6ANoCEdA32+lzmOlwnV9lChoBkdAod6uF+NLlGgHTegDaAhHQN9vs2QKa5R1fZQoaAZHQKJ5qBOpKjBoB03oA2gIR0DfcCcL1EmZdX2UKGgGR0Cf+wMPz4DcaAdN6ANoCEdA33D9UyHmBHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 16, "gamma": 0.98, "gae_lambda": 0.89, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.57.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Wed Jul 27 02:20:31 UTC 2022", "Python": "3.9.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.23.1", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19803e7e21a9cc756c6a8bebf9c3f3c4b8b3766d9177aaa408251a89f53be303
3
+ size 1317748
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2124.3068256933375, "std_reward": 153.8673231558242, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-15T10:54:47.175415"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1345cfc18c0c2e308171fb78c88f7fcc41430cd82382a5bd4408b9839da9667f
3
+ size 2218