fatima113 commited on
Commit
00c4e72
·
verified ·
1 Parent(s): f8c7a4b

Dear model owner(s),
We are a group of researchers investigating the usefulness of sharing AIBOMs (Artificial Intelligence Bill of Materials) to document AI models – AIBOMs are machine-readable structured lists of components (e.g., datasets and models) used to enhance transparency in AI-model supply chains.

To pursue the above-mentioned objective, we identified popular models on HuggingFace and, based on your model card (and some configuration information available in HuggingFace), we generated your AIBOM according to the CyclonDX (v1.6) standard (see https://cyclonedx.org/docs/1.6/json/). AIBOMs are generated as JSON files by using the following open-source supporting tool: https://github.com/MSR4SBOM/ALOHA (technical details are available in the research paper: https://github.com/MSR4SBOM/ALOHA/blob/main/ALOHA.pdf).

The JSON file in this pull request is your AIBOM (see https://github.com/MSR4SBOM/ALOHA/blob/main/documentation.json for details on its structure).

Clearly, the submitted AIBOM matches the current model information, yet it can be easily regenerated when the model evolves, using the aforementioned AIBOM generator tool.

We open this pull request containing an AIBOM of your AI model, and hope it will be considered. We would also like to hear your opinion on the usefulness (or not) of AIBOM by answering a 3-minute anonymous survey: https://forms.gle/WGffSQD5dLoWttEe7.

Thanks in advance, and regards,
Riccardo D’Avino, Fatima Ahmed, Sabato Nocera, Simone Romano, Giuseppe Scanniello (University of Salerno, Italy),
Massimiliano Di Penta (University of Sannio, Italy),
The MSR4SBOM team

Files changed (1) hide show
  1. reducto_RolmOCR.json +111 -0
reducto_RolmOCR.json ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bomFormat": "CycloneDX",
3
+ "specVersion": "1.6",
4
+ "serialNumber": "urn:uuid:d8411c65-830d-47b0-928a-db17d1885512",
5
+ "version": 1,
6
+ "metadata": {
7
+ "timestamp": "2025-06-05T09:41:39.920661+00:00",
8
+ "component": {
9
+ "type": "machine-learning-model",
10
+ "bom-ref": "reducto/RolmOCR-9488b32d-f36e-501e-bed2-4e214df3640f",
11
+ "name": "reducto/RolmOCR",
12
+ "externalReferences": [
13
+ {
14
+ "url": "https://huggingface.co/reducto/RolmOCR",
15
+ "type": "documentation"
16
+ }
17
+ ],
18
+ "modelCard": {
19
+ "modelParameters": {
20
+ "task": "image-text-to-text",
21
+ "architectureFamily": "qwen2_5_vl",
22
+ "modelArchitecture": "Qwen2_5_VLForConditionalGeneration",
23
+ "datasets": [
24
+ {
25
+ "ref": "allenai/olmOCR-mix-0225-60ff9e3d-6392-58a9-97f8-ebf183f689d7"
26
+ }
27
+ ]
28
+ },
29
+ "properties": [
30
+ {
31
+ "name": "library_name",
32
+ "value": "transformers"
33
+ },
34
+ {
35
+ "name": "base_model",
36
+ "value": "Qwen/Qwen2.5-VL-7B-Instruct"
37
+ }
38
+ ]
39
+ },
40
+ "authors": [
41
+ {
42
+ "name": "reducto"
43
+ }
44
+ ],
45
+ "licenses": [
46
+ {
47
+ "license": {
48
+ "id": "Apache-2.0",
49
+ "url": "https://spdx.org/licenses/Apache-2.0.html"
50
+ }
51
+ }
52
+ ],
53
+ "tags": [
54
+ "transformers",
55
+ "safetensors",
56
+ "qwen2_5_vl",
57
+ "image-text-to-text",
58
+ "conversational",
59
+ "dataset:allenai/olmOCR-mix-0225",
60
+ "base_model:Qwen/Qwen2.5-VL-7B-Instruct",
61
+ "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct",
62
+ "license:apache-2.0",
63
+ "text-generation-inference",
64
+ "endpoints_compatible",
65
+ "region:us"
66
+ ]
67
+ }
68
+ },
69
+ "components": [
70
+ {
71
+ "type": "data",
72
+ "bom-ref": "allenai/olmOCR-mix-0225-60ff9e3d-6392-58a9-97f8-ebf183f689d7",
73
+ "name": "allenai/olmOCR-mix-0225",
74
+ "data": [
75
+ {
76
+ "type": "dataset",
77
+ "bom-ref": "allenai/olmOCR-mix-0225-60ff9e3d-6392-58a9-97f8-ebf183f689d7",
78
+ "name": "allenai/olmOCR-mix-0225",
79
+ "contents": {
80
+ "url": "https://huggingface.co/datasets/allenai/olmOCR-mix-0225",
81
+ "properties": [
82
+ {
83
+ "name": "configs",
84
+ "value": "Name of the dataset subset: 00_documents {\"split\": \"train_s2pdf\", \"path\": [\"train-s2pdf.parquet\"]}, {\"split\": \"eval_s2pdf\", \"path\": [\"eval-s2pdf.parquet\"]}"
85
+ },
86
+ {
87
+ "name": "configs",
88
+ "value": "Name of the dataset subset: 01_books {\"split\": \"train_iabooks\", \"path\": [\"train-iabooks.parquet\"]}, {\"split\": \"eval_iabooks\", \"path\": [\"eval-iabooks.parquet\"]}"
89
+ },
90
+ {
91
+ "name": "license",
92
+ "value": "odc-by"
93
+ }
94
+ ]
95
+ },
96
+ "governance": {
97
+ "owners": [
98
+ {
99
+ "organization": {
100
+ "name": "allenai",
101
+ "url": "https://huggingface.co/allenai"
102
+ }
103
+ }
104
+ ]
105
+ },
106
+ "description": "\n\t\n\t\t\n\t\tolmOCR-mix-0225\n\t\n\nolmOCR-mix-0225 is a dataset of ~250,000 PDF pages which have been OCRed into plain-text in a natural reading order using gpt-4o-2024-08-06 and a special\nprompting strategy that preserves any born-digital content from each page.\nThis dataset can be used to train, fine-tune, or evaluate your own OCR document pipeline.\nQuick links:\n\n\ud83d\udcc3 Paper\n\ud83e\udd17 Model\n\ud83d\udee0\ufe0f Code\n\ud83c\udfae Demo\n\n\n\t\n\t\t\n\t\n\t\n\t\tData Mix\n\t\n\n\n\t\n\t\n\t\n\t\tTable 1: Training set composition by source\n\t\n\n\n\t\n\t\t\nSource\nUnique\u2026 See the full description on the dataset page: https://huggingface.co/datasets/allenai/olmOCR-mix-0225."
107
+ }
108
+ ]
109
+ }
110
+ ]
111
+ }