File size: 1,681 Bytes
a2f8007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from datasets import load_dataset
from promethean.datasets import hub_prompts, HubSplit, Dataset, Prompts
from promethean.extract import Extractor, ClientOpts
from promethean.lora import LoraSettings
import os

output_dir="output"
uncensor_ds_name = "Guilherme34/uncensor"
uncensor_ds = load_dataset(uncensor_ds_name, split="train")
def uncensor_items():
    for row in uncensor_ds:
        for message in row["messages"]:
            if message["role"] == "user":
                yield message["content"]
                break

extractor = Extractor(
    teacher="hf:mlabonne/Llama-3.1-70B-Instruct-lorablated",
    max_concurrent=8,
    output_dir=output_dir,
    client_opts=ClientOpts(
        base_url="https://glhf.chat/api/openai/v1",
        api_key=os.environ["GLHF_API_KEY"],
    ),
    dataset=Dataset(
        train=[
            Prompts(
                output_path=f"hub/{uncensor_ds_name}.jsonl",
                count=lambda: len(uncensor_ds),
                items=uncensor_items,
            ),
            hub_prompts(
                name="mlabonne/harmful_behaviors",
                text_field="text",
                split=HubSplit(name="train"),
            ),
        ],
        eval=[
            hub_prompts(
                name="mlabonne/harmful_behaviors",
                text_field="text",
                split=HubSplit(name="test"),
            ),
        ],
    ),
)

lora_settings = LoraSettings(
    lora_r=32,
    lora_alpha=16,
    lora_dropout=0.01,
    num_epochs=2,
    learning_rate=4e-4,
    warmup_steps=10,
)
axolotl_config = lora_settings.llama_70b_axolotl(extractor.output_dataset())

extractor.run()
axolotl_config.save(output_dir)