|
import argparse, json, torch |
|
from torchvision import models, transforms |
|
from PIL import Image |
|
import urllib.request |
|
|
|
IMAGENET_URL = "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt" |
|
|
|
def load_labels(): |
|
with urllib.request.urlopen(IMAGENET_URL) as f: |
|
labels = [s.strip() for s in f.read().decode("utf-8").splitlines()] |
|
return labels |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--image", type=str, default=None, help="Path to an image") |
|
args = parser.parse_args() |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.DEFAULT).to(device).eval() |
|
|
|
preprocess = models.MobileNet_V2_Weights.DEFAULT.transforms() |
|
img = Image.open(args.image).convert("RGB") if args.image else Image.new("RGB", (224,224), "white") |
|
x = preprocess(img).unsqueeze(0).to(device) |
|
with torch.no_grad(): |
|
logits = model(x) |
|
probs = torch.softmax(logits, dim=-1)[0] |
|
top5 = torch.topk(probs, 5) |
|
|
|
labels = load_labels() |
|
for p, idx in zip(top5.values, top5.indices): |
|
print(f"{labels[idx]}: {float(p):.4f}") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|