Update app.py
Browse files
app.py
CHANGED
|
@@ -1,39 +1,39 @@
|
|
| 1 |
-
from flask import Flask, render_template, request
|
| 2 |
-
import torch
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
-
|
| 5 |
-
app = Flask(__name__)
|
| 6 |
-
|
| 7 |
-
# Load fine-tuned model and tokenizer
|
| 8 |
-
model_path = "./finetuned_codegen"
|
| 9 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 10 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.
|
| 11 |
-
|
| 12 |
-
# Set padding token
|
| 13 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 14 |
-
|
| 15 |
-
# Move model to CPU
|
| 16 |
-
device = torch.device("cpu")
|
| 17 |
-
model.to(device)
|
| 18 |
-
|
| 19 |
-
@app.route("/", methods=["GET", "POST"])
|
| 20 |
-
def index():
|
| 21 |
-
generated_code = ""
|
| 22 |
-
prompt = ""
|
| 23 |
-
if request.method == "POST":
|
| 24 |
-
prompt = request.form["prompt"]
|
| 25 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
|
| 26 |
-
outputs = model.generate(
|
| 27 |
-
**inputs,
|
| 28 |
-
max_length=200,
|
| 29 |
-
num_return_sequences=1,
|
| 30 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 31 |
-
do_sample=True,
|
| 32 |
-
temperature=0.7,
|
| 33 |
-
top_p=0.9
|
| 34 |
-
)
|
| 35 |
-
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 36 |
-
return render_template("index.html", generated_code=generated_code, prompt=prompt)
|
| 37 |
-
|
| 38 |
-
if __name__ == "__main__":
|
| 39 |
app.run(debug=True)
|
|
|
|
| 1 |
+
from flask import Flask, render_template, request
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
|
| 5 |
+
app = Flask(__name__)
|
| 6 |
+
|
| 7 |
+
# Load fine-tuned model and tokenizer
|
| 8 |
+
model_path = "./finetuned_codegen"
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32)
|
| 11 |
+
|
| 12 |
+
# Set padding token
|
| 13 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 14 |
+
|
| 15 |
+
# Move model to CPU
|
| 16 |
+
device = torch.device("cpu")
|
| 17 |
+
model.to(device)
|
| 18 |
+
|
| 19 |
+
@app.route("/", methods=["GET", "POST"])
|
| 20 |
+
def index():
|
| 21 |
+
generated_code = ""
|
| 22 |
+
prompt = ""
|
| 23 |
+
if request.method == "POST":
|
| 24 |
+
prompt = request.form["prompt"]
|
| 25 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
|
| 26 |
+
outputs = model.generate(
|
| 27 |
+
**inputs,
|
| 28 |
+
max_length=200,
|
| 29 |
+
num_return_sequences=1,
|
| 30 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 31 |
+
do_sample=True,
|
| 32 |
+
temperature=0.7,
|
| 33 |
+
top_p=0.9
|
| 34 |
+
)
|
| 35 |
+
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 36 |
+
return render_template("index.html", generated_code=generated_code, prompt=prompt)
|
| 37 |
+
|
| 38 |
+
if __name__ == "__main__":
|
| 39 |
app.run(debug=True)
|