File size: 25,659 Bytes
cdd1abc 321afc5 9103c18 cdd1abc e72f650 cbec47b 4f3550b cbec47b f26c916 cbec47b e72f650 b11bd11 cbec47b 7e2e7d7 321afc5 0a270e3 321afc5 5a87640 0d17dcc 6380596 fc8f41b 6380596 fc8f41b 5a87640 a17df3a e72f650 a17df3a e72f650 a17df3a e72f650 a17df3a e72f650 082dfa2 3dcf267 2abfa0b 513daf9 fda87b4 2abfa0b 513daf9 2abfa0b 513daf9 2abfa0b 513daf9 54d0393 513daf9 2abfa0b e292549 3dcf267 3c0a642 2abfa0b 3dcf267 dc4cfb4 3dcf267 3c0a642 2abfa0b 3dcf267 6714978 3dcf267 dc4cfb4 6714978 3dcf267 082dfa2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
---
task_categories:
- visual-question-answering
language:
- en
tags:
- remyx
- SpatialReasoning
- spatial-reasoning
- test-time-compute
- thinking
- reasoning
- multimodal
- vlm
- vision-language
- distance-estimation
- quantitative-spatial-reasoning
pretty_name: SpaceOm
license: apache-2.0
datasets:
- remyxai/SpaceThinker
base_model:
- UCSC-VLAA/VLAA-Thinker-Qwen2.5VL-3B
pipeline_tag: image-text-to-text
library_name: transformers
model-index:
- name: SpaceOm
results:
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: 3DSRBench
type: benchmark
metrics:
- type: success_rate
name: Overall Success Rate
value: 0.5419
results_by_subcategory:
- name: 3D Positional Relation / Orientation
success_rate: 0.4877
- name: Object Localization / 3D Localization
success_rate: 0.6337
- name: Object Properties / Size
success_rate: 0.5043
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: BLINK
type: benchmark
metrics:
- type: success_rate
name: Overall Success Rate
value: 0.599
results_by_subcategory:
- name: 3D Positional Relation / Orientation
success_rate: 0.7972
- name: Counting / Object Counting
success_rate: 0.6167
- name: Depth and Distance / Relative
success_rate: 0.621
- name: Object Localization / 2D Localization
success_rate: 0.582
- name: Point and Object Tracking / Point Correspondence
success_rate: 0.3779
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: MMIU
type: benchmark
metrics:
- type: success_rate
name: Overall Success Rate
value: 0.388
results_by_subcategory:
- name: Camera and Image Transformation / 2D Transformation
success_rate: 0.255
- name: Camera and Image Transformation / 3D Camera Pose
success_rate: 0.4
- name: Camera and Image Transformation / Camera Motion
success_rate: 0.4436
- name: Depth and Distance / Absolute
success_rate: 0.265
- name: Object Localization / 3D Localization
success_rate: 0.3625
- name: Point and Object Tracking / 3D Tracking
success_rate: 0.725
- name: Point and Object Tracking / Point Correspondence
success_rate: 0.265
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: MMVP
type: benchmark
metrics:
- type: success_rate
name: Overall Success Rate
value: 0.5833
results_by_subcategory:
- name: Others / Miscellaneous
success_rate: 0.5833
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: QSpatialBench-Plus
type: benchmark
metrics:
- type: success_rate
name: Overall Success Rate
value: 0.4455
results_by_subcategory:
- name: Depth and Distance / Absolute
success_rate: 0.4455
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: QSpatialBench-ScanNet
type: benchmark
metrics:
- type: success_rate
name: Overall Success Rate
value: 0.4876
results_by_subcategory:
- name: Depth and Distance / Absolute
success_rate: 0.464
- name: Object Properties / Size
success_rate: 0.5111
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: RealWorldQA
type: benchmark
metrics:
- type: success_rate
name: Overall Success Rate
value: 0.6105
results_by_subcategory:
- name: Others / Miscellaneous
success_rate: 0.6105
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: SpatialSense
type: benchmark
metrics:
- type: success_rate
name: Overall Success Rate
value: 0.7043
results_by_subcategory:
- name: 3D Positional Relation / Orientation
success_rate: 0.7043
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: VGBench
type: benchmark
metrics:
- type: success_rate
name: Overall Success Rate
value: 0.3504
results_by_subcategory:
- name: Camera and Image Transformation / 2D Transformation
success_rate: 0.2568
- name: Camera and Image Transformation / 3D Camera Pose
success_rate: 0.4371
- name: Depth and Distance / Absolute
success_rate: 0.3339
- name: Depth and Distance / Relative
success_rate: 0.32
- name: Object Localization / 3D Localization
success_rate: 0.4283
- name: Point and Object Tracking / 3D Tracking
success_rate: 0.3264
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: VSI-Bench_8
type: benchmark
metrics:
- type: success_rate
name: Overall Success Rate
value: 0.2558
results_by_subcategory:
- name: 3D Positional Relation / Orientation
success_rate: 0.3998
- name: Counting / Object Counting
success_rate: 0.229
- name: Depth and Distance / Absolute
success_rate: 0.1562
- name: Depth and Distance / Relative
success_rate: 0.3648
- name: Object Properties / Size
success_rate: 0.1645
- name: Others / Miscellaneous
success_rate: 0.2204
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: VSR-ZeroShot
type: benchmark
metrics:
- type: success_rate
name: Overall Success Rate
value: 0.8085
results_by_subcategory:
- name: 3D Positional Relation / Orientation
success_rate: 0.8085
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: cvbench
type: benchmark
metrics:
- type: success_rate
name: Overall Success Rate
value: 0.6839
results_by_subcategory:
- name: Counting / Object Counting
success_rate: 0.6294
- name: Depth and Distance / Relative
success_rate: 0.7408
- name: Object Localization / 3D Localization
success_rate: 0.6815
- task:
type: visual-question-answering
name: Spatial Reasoning
dataset:
name: spatialbench
type: benchmark
metrics:
- type: success_rate
name: Overall Success Rate
value: 0.6553
results_by_subcategory:
- name: 3D Positional Relation / Orientation
success_rate: 0.6765
- name: Counting / Object Counting
success_rate: 0.75
- name: Object Properties / Existence
success_rate: 0.925
- name: Object Properties / Reachability
success_rate: 0.55
- name: Object Properties / Size
success_rate: 0.375
---
[](https://remyx.ai/?model_id=SpaceThinker-Qwen2.5VL-3B&sha256=abc123def4567890abc123def4567890abc123def4567890abc123def4567890)
# SpaceOm
<img src="https://cdn-uploads.huggingface.co/production/uploads/647777304ae93470ffc28913/5cPsHwrmzqPOjd7zUgzss.gif" width="500"/>
## π Contents
- [π§ Model Overview](#model-overview)
- [π Evaluation & Benchmarks](#model-evaluation)
- [πββοΈ Running SpaceOm](#running-spaceom)
- [ποΈββοΈ Training Configuration](#training-spaceom)
- [π Dataset Info](#dataset-info)
- [β οΈ Limitations](#limitations)
- [π Citation](#citation)
## Model Overview
**SpaceOm** improves over **SpaceThinker** by adding:
* the target module `o_proj` in LoRA fine-tuning
* **SpaceOm** [dataset](https://huggingface.co/datasets/salma-remyx/SpaceOm) for longer reasoning traces
* **Robo2VLM-Reasoning** [dataset](https://huggingface.co/datasets/salma-remyx/Robo2VLM-Reasoning) for more robotics domain and MCVQA examples
The choice to include `o_proj` among the target modules in LoRA finetuning was inspired by the study [here](https://arxiv.org/pdf/2505.20993v1), which argues for
the importance of this module in reasoning models.
The reasoning traces in the SpaceThinker dataset average ~200 "thinking" tokens so now we've included longer reasoning traces in the training data
to help the model use more tokens in reasoning.
Aiming to improve alignment for robotics applications, we've trained with synthetic reasoning traces, derived from the **Robo2VLM-1** [dataset](https://huggingface.co/datasets/keplerccc/Robo2VLM-1).
## Running SpaceOm
### Ollama
To launch with ollama, run:
```bash
ollama run hf.co/remyxai/SpaceOm:latest
```
or
```bash
ollama run remyxai/spaceom
```
### llama.cpp
To run locally with **llama.cpp**, install and build this [branch](https://github.com/HimariO/llama.cpp.qwen2.5vl/tree/qwen25-vl) and download the [.gguf weights here](https://huggingface.co/remyxai/SpaceThinker-Qwen2.5VL-3B/tree/main/gguf)
```bash
./llama-qwen2vl-cli -m spaceom-F16.gguf
--mmproj spaceom-vision.gguf
--image images/example_1.jpg --threads 24 -ngl 9
-p "Does the man in blue shirt working have a greater \\
height compared to the wooden pallet with boxes on floor?"
```
### Transformers
Run locally using **Transformers**
```python
import torch
from PIL import Image
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
import requests
from io import BytesIO
# Configuration
model_id = "remyxai/SpaceOm"
image_path = "images/example_1.jpg" # or local path
prompt = "What can you infer from this image about the environment?"
system_message = (
"You are VL-Thinking π€, a helpful assistant with excellent reasoning ability. "
"You should first think about the reasoning process and then provide the answer. "
"Use <think>...</think> and <answer>...</answer> tags."
)
# Load model and processor
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_id, device_map="auto", torch_dtype=torch.bfloat16
)
processor = AutoProcessor.from_pretrained(model_id)
# Load and preprocess image
if image_path.startswith("http"):
image = Image.open(BytesIO(requests.get(image_path).content)).convert("RGB")
else:
image = Image.open(image_path).convert("RGB")
if image.width > 512:
ratio = image.height / image.width
image = image.resize((512, int(512 * ratio)), Image.Resampling.LANCZOS)
# Format input
chat = [
{"role": "system", "content": [{"type": "text", "text": system_message}]},
{"role": "user", "content": [{"type": "image", "image": image},
{"type": "text", "text": prompt}]}
]
text_input = processor.apply_chat_template(chat, tokenize=False,
add_generation_prompt=True)
# Tokenize
inputs = processor(text=[text_input], images=[image],
return_tensors="pt").to("cuda")
# Generate response
generated_ids = model.generate(**inputs, max_new_tokens=1024)
output = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print("Response:\n", output)
```
## Dataset Info
The [SpaceThinker](https://huggingface.co/datasets/remyxai/SpaceThinker) dataset includes over 12K samples synthesized using VQASynth on a subset of images in the localized narratives split of [the cauldron](https://huggingface.co/datasets/HuggingFaceM4/the_cauldron).
**SpaceThinker** is formatted similar to the [Llama-Nemotron-Post-Training-Dataset-v1](https://huggingface.co/datasets/nvidia/Llama-Nemotron-Post-Training-Dataset) to toggle reasoning.
The [SpaceOm](https://huggingface.co/datasets/remyxai/SpaceOm) dataset includes ~1K samples synthesized using VQASynth to include longer reasoning traces.
The [Robo2VLM-Reasoning](https://huggingface.co/datasets/remyxai/Robo2VLM-Reasoning) datasert is a subset of the original [Robo2VLM](https://huggingface.co/datasets/remyxai/Robo2VLM-Reasoning) dataset modified to include reasoning traces.
These datasets were combined to create the final training data for this model.
The model builds upon the ideas from [SpatialVLM (Chen et al., 2024)](https://spatial-vlm.github.io/), introducing synthetic reasoning traces grounded on a 3D scene reconstruction pipeline using **Molmo, VGGT, SAM2**.
## Training SpaceOm
**PEFT Configuration**
- Architecture: Qwen2.5-VL-3B
- Base model: UCSC-VLAA/VLAA-Thinker-Qwen2.5VL-3B
- Method: LoRA finetuning (PEFT)
- LoRA Alpha: 256
- LoRA Rank: 128
- Target Modules: q_proj, v_proj, o_proj
- Optimizer: AdamW (lr=2e-5), batch size = 1, epochs = 3
- Max input length: 1024 tokens
Reproduce LoRA SFT training with included script:
```bash
python train.py
```
## Model Evaluation
### OmniSpatial
Benchmark leaderboard with **SpaceOm** highlighted.
| Model | Avg | Manip | Motion | Traffic | Locate | Geospatial | Pattern | Geometric | Ego | Allo | Hypo |
|-----------------------------|--------|--------|--------|---------|--------|------------|---------|-----------|--------|--------|--------|
| π₯ o3-2025-04-16 | 56.33 | 71.89 | 66.18 | 61.18 | 68.57 | 65.45 | 40.21 | 29.68 | 77.06 | 48.40 | 48.19 |
| π₯ Gemini-2.5-pro-preview-05-06 | 55.19 | 67.57 | 71.39 | 62.35 | 75.24 | 64.55 | 43.30 | 34.84 | 74.51 | 38.03 | 37.35 |
| π₯ Gemini-2.5-flash-thinking-05-20 | 53.16 | 70.27 | 64.74 | 61.18 | 72.38 | 58.18 | 35.05 | 36.13 | 74.12 | 40.96 | 32.53 |
| o4-mini-04-16 | 52.77 | 72.97 | 59.83 | 60.00 | 73.33 | 61.82 | 34.02 | 36.77 | 73.53 | 40.69 | 40.96 |
| Gemini-2.5-flash-preview-05-20 | 52.12 | 67.57 | 62.72 | 68.24 | 73.33 | 60.91 | 38.14 | 34.19 | 75.49 | 35.90 | 33.73 |
| GPT-4.1-2025-04-14 | 51.78 | 66.22 | 64.74 | 60.00 | 65.33 | 60.18 | 31.75 | 30.06 | 70.98 | 40.64 | 39.04 |
| o1-2024-12-17 | 50.36 | 71.62 | 60.98 | 57.65 | 63.81 | 60.00 | 39.18 | 27.10 | 71.57 | 38.03 | 36.14 |
| InternVL3-78B | 49.33 | 63.78 | 63.12 | 56.24 | 59.24 | 51.45 | 27.63 | 30.19 | 74.51 | 38.46 | 35.90 |
| GPT-4.1-mini-2025-04-14 | 48.87 | 64.32 | 56.53 | 59.06 | 60.19 | 56.36 | 29.28 | 30.19 | 72.55 | 39.57 | 39.28 |
| Claude-3-7-thinking-20250219| 48.62 | 57.21 | 59.73 | 53.73 | 67.94 | 57.27 | 30.24 | 28.17 | 68.63 | 37.94 | 36.95 |
| InternVL3-38B | 48.48 | 63.42 | 63.58 | 54.59 | 58.29 | 50.55 | 29.90 | 28.52 | 72.16 | 36.76 | 33.49 |
| Gemini-2.0-flash-exp | 48.40 | 61.89 | 56.01 | 51.76 | 63.43 | 59.09 | 20.82 | 33.81 | 72.75 | 39.20 | 39.28 |
| Qwen-VL2.5-72B | 47.85 | 58.38 | 60.12 | 50.12 | 59.81 | 53.64 | 26.19 | 33.03 | 71.37 | 36.81 | 36.39 |
| GPT-4o-2024-11-20 | 47.81 | 65.54 | 57.23 | 56.47 | 52.38 | 54.09 | 26.29 | 25.48 | 75.98 | 39.49 | 39.76 |
| Claude-3-7-sonnet-20250219 | 47.53 | 57.57 | 55.95 | 56.71 | 63.81 | 59.09 | 29.48 | 28.39 | 72.16 | 36.06 | 36.63 |
| Qwen-VL2.5-32B | 47.36 | 63.06 | 55.09 | 51.76 | 66.29 | 56.91 | 26.39 | 27.48 | 68.04 | 37.50 | 40.24 |
| Claude-3-5-sonnet-20241022 | 46.86 | 54.05 | 54.57 | 58.12 | 68.38 | 53.09 | 26.60 | 31.74 | 70.00 | 34.79 | 39.52 |
| InternVL3-14B | 45.94 | 54.32 | 60.17 | 50.35 | 51.81 | 51.45 | 28.04 | 28.26 | 68.04 | 35.37 | 34.46 |
| LLaVA-onevision-qwen2-72B | 45.66 | 62.16 | 50.29 | 54.12 | 60.95 | 56.36 | 22.68 | 25.81 | 76.47 | 37.23 | 33.73 |
| SoFar-Qwen2.5-3B | 45.14 | 56.49 | 51.16 | 54.12 | 53.14 | 52.73 | 31.75 | 22.88 | 71.60 | 36.56 | 41.69 |
| Gemma-3-27B | 44.75 | 56.76 | 55.78 | 57.65 | 50.48 | 52.73 | 27.84 | 29.03 | 64.71 | 33.51 | 32.53 |
| Gemini-2.0-flash-lite | 44.03 | 59.19 | 46.71 | 60.24 | 49.52 | 53.27 | 21.65 | 31.23 | 66.47 | 36.81 | 38.80 |
| Gemma-3-12B | 43.71 | 54.05 | 54.91 | 54.12 | 47.62 | 45.45 | 16.49 | 30.32 | 63.73 | 36.70 | 33.73 |
| GPT-4o-mini-2024-07-18 | 42.64 | 55.95 | 50.29 | 54.59 | 43.43 | 44.91 | 22.47 | 29.42 | 61.57 | 36.76 | 34.22 |
| GPT-4.1-nano-2025-04-14 | 42.62 | 50.90 | 53.85 | 54.90 | 40.95 | 42.42 | 24.40 | 30.11 | 53.59 | 37.23 | 33.73 |
| π§ββοΈ **SpaceOm** | 41.79 | 51.89 | 47.98 | 50.82 | 39.62 | 43.64 | 27.63 | 27.61 | 70.00 | 35.74 | 33.73 |
| InternVL3-8B | 41.60 | 52.43 | 40.87 | 48.94 | 51.05 | 44.77 | 24.95 | 28.63 | 64.20 | 38.62 | 40.96 |
| SpaceThinker-Qwen2.5-3B | 40.42 | 47.84 | 53.06 | 43.29 | 35.43 | 38.73 | 24.33 | 28.00 | 58.04 | 35.11 | 31.08 |
| Qwen-VL2.5-3B | 40.30 | 55.41 | 47.51 | 46.12 | 42.29 | 44.73 | 32.16 | 23.87 | 59.41 | 33.30 | 30.84 |
| SpaceQwen2.5-VL-3B | 40.25 | 58.11 | 39.88 | 41.18 | 40.95 | 40.91 | 29.90 | 25.81 | 63.73 | 38.83 | 39.76 |
| Gemma-3-4B | 39.79 | 41.89 | 49.71 | 56.47 | 27.62 | 36.36 | 23.71 | 24.52 | 59.80 | 36.17 | 38.55 |
| Qwen-VL2.5-7B | 39.18 | 58.38 | 35.09 | 50.12 | 45.33 | 44.00 | 31.13 | 29.42 | 64.51 | 33.19 | 37.35 |
| InternVL3-2B | 37.98 | 50.00 | 40.58 | 43.29 | 40.00 | 40.55 | 21.86 | 28.52 | 55.49 | 35.11 | 33.01 |
| SpaceMantis-13B | 36.36 | 47.03 | 36.59 | 40.94 | 34.86 | 33.09 | 22.27 | 24.39 | 49.22 | 38.25 | 39.28 |
| RoboPoint-vicuna-7B | 35.85 | 57.03 | 28.61 | 34.82 | 37.33 | 40.55 | 29.90 | 22.71 | 50.20 | 38.72 | 40.96 |
| LLaVA-onevision-qwen2-7B | 35.68 | 43.24 | 38.15 | 32.94 | 29.52 | 41.82 | 28.87 | 22.58 | 47.06 | 36.17 | 37.35 |
| SpatialBot-3B | 35.68 | 43.24 | 38.15 | 32.94 | 29.52 | 41.82 | 28.87 | 22.58 | 47.06 | 36.17 | 37.35 |
| LLaVA-1.5-vicuna-7B | 34.97 | 54.46 | 31.23 | 35.29 | 36.19 | 33.94 | 29.01 | 24.18 | 55.60 | 34.66 | 36.14 |
| RoboPoint-vicuna-13B | 34.60 | 55.68 | 28.15 | 42.82 | 32.19 | 32.55 | 24.12 | 27.74 | 49.02 | 37.66 | 33.49 |
See full **SpaceOm** [results here](https://huggingface.co/datasets/salma-remyx/SpaceOm_OmniSpatial/blob/main/OmniSpatial_spaceom_results.json) for the
**OmniSpatial** [benchmark](https://qizekun.github.io/omnispatial/).
### SpatialScore
Top scores in each category are **bolded** in partial table of 3B/4B models.
| **Model** | **Overall** | **Count.** | **Obj.-Loc.** | **Pos.-Rel.** | **Dist.** | **Obj.-Prop.** | **Cam.&IT.** | **Tracking** | **Others** |
|------------------------|-------------|------------|----------------|----------------|-----------|----------------|---------------|---------------|------------|
| InternVL2.5-4B | 49.82 | **53.32** | **62.02** | **62.82** | **42.30** | 27.00 | 32.49 | 37.02 | **48.95** |
| π§ββοΈ **SpaceOm** | 48.15 | 47.84 | 55.24 | 61.83 | 41.48 | 30.97 | 32.94 | **37.20** | 43.74 |
| Qwen2.5-VL-3B | 47.90 | 46.62 | 55.55 | 62.23 | 37.53 | 32.59 | **35.85** | 36.90 | 42.19 |
| SpaceQwen2.5-VL-3B | 42.31 | 45.01 | 49.78 | 57.88 | 27.36 | **34.11** | 26.34 | 26.44 | 43.58 |
| SpatialBot-Phi2-3B | 41.65 | 53.25 | 54.32 | 55.40 | 27.12 | 26.10 | 24.21 | 27.57 | 41.66 |
See [all results](https://huggingface.co/datasets/salma-remyx/SpaceOm_SpatialScore) for evaluating **SpaceOm** on the **SpatialScore** [benchmark](https://haoningwu3639.github.io/SpatialScore/).
### SpaCE-10
Top scores in each category are **bolded** in partial table of 3B/4B models.
[](https://colab.research.google.com/drive/1YpIOjJFZ-Zaomg77ImeQHSqYBLB8T1Ce?usp=sharing)
| **Model** | **Overall** | **EQ** | **SQ** | **SA** | **OO** | **OS** | **EP** | **FR** | **SP** | **Source** |
|--------------------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|
| InternVL2.5-4B | **36.01** | **34.30**| 34.40 | 43.60 | 44.40 | 16.50 | **31.10**| **50.10**| **33.70**| Table |
| SpaceThinker | 32.72 | 32.73 | 24.81 | 47.26 | 50.33 | 33.63 | 9.25 | 37.54 | 26.25 | GPT Eval |
| π§ββοΈ **SpaceOm** | 32.32 | 32.47 | 24.81 | **47.63**| 50.00 | 32.52 | 9.12 | 37.04 | 25.00 | GPT Eval |
| SpaceQwen | 31.98 | 31.19 | 25.89 | 41.61 | **51.98**| **35.18**| 10.97 | 36.54 | 22.50 | GPT Eval |
| Qwen2.5-VL-3B-Instruct | 30.00 | 31.70 | **45.50**| 39.00 | 43.00 | 25.30 | 11.50 | 22.80 | 21.20 | Table |
**Legend:**
- EQ: Entity Quantification
- SQ: Scene Quantification
- SA: Size Assessment
- OO: Object-Object spatial relations
- OS: Object-Scene spatial relations
- EP: Entity Presence
- FR: Functional Reasoning
- SP: Spatial Planning
> βΉοΈ Note: Scores for SpaceQwen, SpaceThinker, SpaceOm are generated via `gpt_eval_score` on single-choice (`*-single`) versions of the SpaCE-10 benchmark tasks. Other entries reflect leaderboard accuracy scores from the official SpaCE-10 evaluation table.
Read more about the [SpaCE-10 benchmark](https://arxiv.org/pdf/2506.07966v1) or see [results here](https://huggingface.co/datasets/salma-remyx/SpaceOm_SpaCE-10_Results/blob/main/20250611_041721_results.json)
## Limitations
- Performance may degrade in cluttered environments or camera perspective.
- This model was fine-tuned using synthetic reasoning over an internet image dataset.
- Multimodal biases inherent to the base model (Qwen2.5-VL) may persist.
- Not intended for use in safety-critical or legal decision-making.
> Users are encouraged to evaluate outputs critically and consider fine-tuning for domain-specific safety and performance. Distances estimated using autoregressive
> transformers may help in higher-order reasoning for planning and behavior but may not be suitable replacements for measurements taken with high-precision sensors,
> calibrated stereo vision systems, or specialist monocular depth estimation models capable of more accurate, pixel-wise predictions and real-time performance.
## Citation
```
@article{chen2024spatialvlm,
title = {SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities},
author = {Chen, Boyuan and Xu, Zhuo and Kirmani, Sean and Ichter, Brian and Driess, Danny and Florence, Pete and Sadigh, Dorsa and Guibas, Leonidas and Xia, Fei},
journal = {arXiv preprint arXiv:2401.12168},
year = {2024},
url = {https://arxiv.org/abs/2401.12168},
}
@misc{qwen2.5-VL,
title = {Qwen2.5-VL},
url = {https://qwenlm.github.io/blog/qwen2.5-vl/},
author = {Qwen Team},
month = {January},
year = {2025}
}
@misc{vl-thinking2025,
title={SFT or RL? An Early Investigation into Training R1-Like Reasoning Large Vision-Language Models },
author={Hardy Chen and Haoqin Tu and Fali Wang and Hui Liu and Xianfeng Tang and Xinya Du and Yuyin Zhou and Cihang Xie},
year = {2025},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/UCSC-VLAA/VLAA-Thinking}},
}
@article{wu2025spatialscore,
author = {Wu, Haoning and Huang, Xiao and Chen, Yaohui and Zhang, Ya and Wang, Yanfeng and Xie, Weidi},
title = {SpatialScore: Towards Unified Evaluation for Multimodal Spatial Understanding},
journal = {arXiv preprint arXiv:2505.17012},
year = {2025},
}
``` |