--- license: apache-2.0 datasets: - remyxai/OpenSpaces tags: - remyx - vqasynth - spatial-reasoning - multimodal - vlm - vision-language - robotics - distance-estimation - embodied-ai - quantitative-spatial-reasoning base_model: - Qwen/Qwen2.5-VL-3B-Instruct language: - en pipeline_tag: image-text-to-text new_version: remyxai/SpaceThinker-Qwen2.5VL-3B library_name: transformers --- # SpaceQwen2.5-VL-3B-Instruct - **Model Type:** Multimodal, Vision-Language Model - **Architecture**: `Qwen2.5-VL-3B-Instruct` - **Model Size:** 3.75B parameters (FP16) - **Finetuned from:** Qwen/Qwen2.5-VL-3B-Instruct - **Finetune Strategy:** LoRA (Low-Rank Adaptation) - **License:** Apache-2.0 ### Model Overview This model uses data synthesis techniques and publically available models to reproduce the work described in SpatialVLM to enhance the spatial reasoning of multimodal models. With a pipeline of expert models, we can infer spatial relationships between objects in a scene to create VQA dataset for spatial reasoning. ## Running SpaceQwen2.5-VL-3B-Instruct ### Transformers Install qwen dependencies: ``` pip install qwen-vl-utils[decord]==0.0.8 ``` To run inference on a sample image: ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "remyxai/SpaceQwen2.5-VL-3B-Instruct", torch_dtype="auto", device_map="auto" ) processor = AutoProcessor.from_pretrained("remyxai/SpaceQwen2.5-VL-3B-Instruct") messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://raw.githubusercontent.com/remyxai/VQASynth/refs/heads/main/assets/warehouse_sample_2.jpeg", }, {"type": "text", "text": "What is the height of the man in the red hat in feet?"}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ### GGUF Or run **SpaceQwen2.5-VL-3B-Instruct** using **llama.cpp**: ```bash ./llama-qwen2vl-cli -m /path/to/SpaceQwen2.5-VL-3B-Instruct/SpaceQwen2.5-VL-3B-Instruct-F16.gguf \ --mmproj /path/to/SpaceQwen2.5-VL-3B-Instruct/spaceqwen2.5-vl-3b-instruct-vision.gguf \ -p "What's the height of the man in the red hat?" \ --image /path/to/warehouse_sample_2.jpeg --threads 24 -ngl 99 ``` ## Dataset & Training **SpaceQwen2.5-VL-3B-Instruct** uses LoRA to fine-tune [Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) on the [OpenSpaces](https://huggingface.co/datasets/salma-remyx/OpenSpaces) dataset. **Dataset Summary**: - ~10k synthetic spatial reasoning traces - Question types: spatial relations (distances (units), above, left-of, contains, closest to) - Format: image (RGB) + question + answer - **Dataset:** [OpenSpaces](https://huggingface.co/datasets/remyxai/OpenSpaces) - **Code:** [VQASynth](https://github.com/remyxai/VQASynth/tree/main) - **Reference:** [SpatialVLM](https://spatial-vlm.github.io/) Scripts for LoRA SFT available at [trl](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_vlm.py) ## Model Evaluation (Coming Soon) Stay tuned for the [VLMEvalKit QSpatial benchmark](https://github.com/open-compass/VLMEvalKit/blob/8f07d6cf089e40b651424dd97ae3babb58bc8647/README.md?plain=1#L38) Planned comparisons: - 🌋 [SpaceLLaVA](https://huggingface.co/remyxai/SpaceLLaVA) - 🧑‍🏫 [SpaceQwen2.5-VL-3B-Instruct](https://huggingface.co/remyxai/SpaceQwen2.5-VL-3B-Instruct) - 🤖 Related VLMs and VLAs for robotics You can also try it on [Discord](http://discord.gg/b2yGuCNpuC ) or the [HF space](https://huggingface.co/spaces/remyxai/SpaceQwen2.5-VL-3B-Instruct). ## ⚠️ Limitations & Ethical Considerations - Performance may degrade in cluttered environments or camera perspective. - This model was fine-tuned using synthetic reasoning over an internet image dataset. - Multimodal biases inherent to the base model (Qwen2.5-VL) may persist. - Not intended for use in safety-critical or legal decision-making. > Users are encouraged to evaluate outputs critically and consider fine-tuning for domain-specific safety and performance. ## Citation ``` @article{chen2024spatialvlm, title = {SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities}, author = {Chen, Boyuan and Xu, Zhuo and Kirmani, Sean and Ichter, Brian and Driess, Danny and Florence, Pete and Sadigh, Dorsa and Guibas, Leonidas and Xia, Fei}, journal = {arXiv preprint arXiv:2401.12168}, year = {2024}, url = {https://arxiv.org/abs/2401.12168}, } @misc{qwen2.5-VL, title = {Qwen2.5-VL}, url = {https://qwenlm.github.io/blog/qwen2.5-vl/}, author = {Qwen Team}, month = {January}, year = {2025} } ```