model update
Browse files- README.md +232 -0
- config.json +1 -1
- tokenizer_config.json +1 -1
- trainer_config.json +1 -0
- validation_loss.json +1 -0
README.md
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- relbert/semeval2012_relational_similarity
|
| 4 |
+
model-index:
|
| 5 |
+
- name: relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-e-loob
|
| 6 |
+
results:
|
| 7 |
+
- task:
|
| 8 |
+
name: Relation Mapping
|
| 9 |
+
type: sorting-task
|
| 10 |
+
dataset:
|
| 11 |
+
name: Relation Mapping
|
| 12 |
+
args: relbert/relation_mapping
|
| 13 |
+
type: relation-mapping
|
| 14 |
+
metrics:
|
| 15 |
+
- name: Accuracy
|
| 16 |
+
type: accuracy
|
| 17 |
+
value: None
|
| 18 |
+
- task:
|
| 19 |
+
name: Analogy Questions (SAT full)
|
| 20 |
+
type: multiple-choice-qa
|
| 21 |
+
dataset:
|
| 22 |
+
name: SAT full
|
| 23 |
+
args: relbert/analogy_questions
|
| 24 |
+
type: analogy-questions
|
| 25 |
+
metrics:
|
| 26 |
+
- name: Accuracy
|
| 27 |
+
type: accuracy
|
| 28 |
+
value: None
|
| 29 |
+
- task:
|
| 30 |
+
name: Analogy Questions (SAT)
|
| 31 |
+
type: multiple-choice-qa
|
| 32 |
+
dataset:
|
| 33 |
+
name: SAT
|
| 34 |
+
args: relbert/analogy_questions
|
| 35 |
+
type: analogy-questions
|
| 36 |
+
metrics:
|
| 37 |
+
- name: Accuracy
|
| 38 |
+
type: accuracy
|
| 39 |
+
value: None
|
| 40 |
+
- task:
|
| 41 |
+
name: Analogy Questions (BATS)
|
| 42 |
+
type: multiple-choice-qa
|
| 43 |
+
dataset:
|
| 44 |
+
name: BATS
|
| 45 |
+
args: relbert/analogy_questions
|
| 46 |
+
type: analogy-questions
|
| 47 |
+
metrics:
|
| 48 |
+
- name: Accuracy
|
| 49 |
+
type: accuracy
|
| 50 |
+
value: None
|
| 51 |
+
- task:
|
| 52 |
+
name: Analogy Questions (Google)
|
| 53 |
+
type: multiple-choice-qa
|
| 54 |
+
dataset:
|
| 55 |
+
name: Google
|
| 56 |
+
args: relbert/analogy_questions
|
| 57 |
+
type: analogy-questions
|
| 58 |
+
metrics:
|
| 59 |
+
- name: Accuracy
|
| 60 |
+
type: accuracy
|
| 61 |
+
value: None
|
| 62 |
+
- task:
|
| 63 |
+
name: Analogy Questions (U2)
|
| 64 |
+
type: multiple-choice-qa
|
| 65 |
+
dataset:
|
| 66 |
+
name: U2
|
| 67 |
+
args: relbert/analogy_questions
|
| 68 |
+
type: analogy-questions
|
| 69 |
+
metrics:
|
| 70 |
+
- name: Accuracy
|
| 71 |
+
type: accuracy
|
| 72 |
+
value: None
|
| 73 |
+
- task:
|
| 74 |
+
name: Analogy Questions (U4)
|
| 75 |
+
type: multiple-choice-qa
|
| 76 |
+
dataset:
|
| 77 |
+
name: U4
|
| 78 |
+
args: relbert/analogy_questions
|
| 79 |
+
type: analogy-questions
|
| 80 |
+
metrics:
|
| 81 |
+
- name: Accuracy
|
| 82 |
+
type: accuracy
|
| 83 |
+
value: None
|
| 84 |
+
- task:
|
| 85 |
+
name: Lexical Relation Classification (BLESS)
|
| 86 |
+
type: classification
|
| 87 |
+
dataset:
|
| 88 |
+
name: BLESS
|
| 89 |
+
args: relbert/lexical_relation_classification
|
| 90 |
+
type: relation-classification
|
| 91 |
+
metrics:
|
| 92 |
+
- name: F1
|
| 93 |
+
type: f1
|
| 94 |
+
value: None
|
| 95 |
+
- name: F1 (macro)
|
| 96 |
+
type: f1_macro
|
| 97 |
+
value: None
|
| 98 |
+
- task:
|
| 99 |
+
name: Lexical Relation Classification (CogALexV)
|
| 100 |
+
type: classification
|
| 101 |
+
dataset:
|
| 102 |
+
name: CogALexV
|
| 103 |
+
args: relbert/lexical_relation_classification
|
| 104 |
+
type: relation-classification
|
| 105 |
+
metrics:
|
| 106 |
+
- name: F1
|
| 107 |
+
type: f1
|
| 108 |
+
value: None
|
| 109 |
+
- name: F1 (macro)
|
| 110 |
+
type: f1_macro
|
| 111 |
+
value: None
|
| 112 |
+
- task:
|
| 113 |
+
name: Lexical Relation Classification (EVALution)
|
| 114 |
+
type: classification
|
| 115 |
+
dataset:
|
| 116 |
+
name: BLESS
|
| 117 |
+
args: relbert/lexical_relation_classification
|
| 118 |
+
type: relation-classification
|
| 119 |
+
metrics:
|
| 120 |
+
- name: F1
|
| 121 |
+
type: f1
|
| 122 |
+
value: None
|
| 123 |
+
- name: F1 (macro)
|
| 124 |
+
type: f1_macro
|
| 125 |
+
value: None
|
| 126 |
+
- task:
|
| 127 |
+
name: Lexical Relation Classification (K&H+N)
|
| 128 |
+
type: classification
|
| 129 |
+
dataset:
|
| 130 |
+
name: K&H+N
|
| 131 |
+
args: relbert/lexical_relation_classification
|
| 132 |
+
type: relation-classification
|
| 133 |
+
metrics:
|
| 134 |
+
- name: F1
|
| 135 |
+
type: f1
|
| 136 |
+
value: None
|
| 137 |
+
- name: F1 (macro)
|
| 138 |
+
type: f1_macro
|
| 139 |
+
value: None
|
| 140 |
+
- task:
|
| 141 |
+
name: Lexical Relation Classification (ROOT09)
|
| 142 |
+
type: classification
|
| 143 |
+
dataset:
|
| 144 |
+
name: ROOT09
|
| 145 |
+
args: relbert/lexical_relation_classification
|
| 146 |
+
type: relation-classification
|
| 147 |
+
metrics:
|
| 148 |
+
- name: F1
|
| 149 |
+
type: f1
|
| 150 |
+
value: None
|
| 151 |
+
- name: F1 (macro)
|
| 152 |
+
type: f1_macro
|
| 153 |
+
value: None
|
| 154 |
+
|
| 155 |
+
---
|
| 156 |
+
# relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-e-loob
|
| 157 |
+
|
| 158 |
+
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
|
| 159 |
+
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
|
| 160 |
+
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
|
| 161 |
+
It achieves the following results on the relation understanding tasks:
|
| 162 |
+
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-e-loob/raw/main/analogy.json)):
|
| 163 |
+
- Accuracy on SAT (full): None
|
| 164 |
+
- Accuracy on SAT: None
|
| 165 |
+
- Accuracy on BATS: None
|
| 166 |
+
- Accuracy on U2: None
|
| 167 |
+
- Accuracy on U4: None
|
| 168 |
+
- Accuracy on Google: None
|
| 169 |
+
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-e-loob/raw/main/classification.json)):
|
| 170 |
+
- Micro F1 score on BLESS: None
|
| 171 |
+
- Micro F1 score on CogALexV: None
|
| 172 |
+
- Micro F1 score on EVALution: None
|
| 173 |
+
- Micro F1 score on K&H+N: None
|
| 174 |
+
- Micro F1 score on ROOT09: None
|
| 175 |
+
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-e-loob/raw/main/relation_mapping.json)):
|
| 176 |
+
- Accuracy on Relation Mapping: None
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
### Usage
|
| 180 |
+
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
|
| 181 |
+
```shell
|
| 182 |
+
pip install relbert
|
| 183 |
+
```
|
| 184 |
+
and activate model as below.
|
| 185 |
+
```python
|
| 186 |
+
from relbert import RelBERT
|
| 187 |
+
model = RelBERT("relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-e-loob")
|
| 188 |
+
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
|
| 189 |
+
```
|
| 190 |
+
|
| 191 |
+
### Training hyperparameters
|
| 192 |
+
|
| 193 |
+
The following hyperparameters were used during training:
|
| 194 |
+
- model: roberta-large
|
| 195 |
+
- max_length: 64
|
| 196 |
+
- mode: average_no_mask
|
| 197 |
+
- data: relbert/semeval2012_relational_similarity
|
| 198 |
+
- template_mode: manual
|
| 199 |
+
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>’s <mask>
|
| 200 |
+
- loss_function: info_loob
|
| 201 |
+
- temperature_nce_constant: 0.05
|
| 202 |
+
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
|
| 203 |
+
- epoch: 22
|
| 204 |
+
- batch: 128
|
| 205 |
+
- lr: 5e-06
|
| 206 |
+
- lr_decay: False
|
| 207 |
+
- lr_warmup: 1
|
| 208 |
+
- weight_decay: 0
|
| 209 |
+
- random_seed: 0
|
| 210 |
+
- exclude_relation: None
|
| 211 |
+
- n_sample: 640
|
| 212 |
+
- gradient_accumulation: 8
|
| 213 |
+
|
| 214 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-e-loob/raw/main/trainer_config.json).
|
| 215 |
+
|
| 216 |
+
### Reference
|
| 217 |
+
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
| 218 |
+
|
| 219 |
+
```
|
| 220 |
+
|
| 221 |
+
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
|
| 222 |
+
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
|
| 223 |
+
author = "Ushio, Asahi and
|
| 224 |
+
Schockaert, Steven and
|
| 225 |
+
Camacho-Collados, Jose",
|
| 226 |
+
booktitle = "EMNLP 2021",
|
| 227 |
+
year = "2021",
|
| 228 |
+
address = "Online",
|
| 229 |
+
publisher = "Association for Computational Linguistics",
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
```
|
config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "
|
| 3 |
"architectures": [
|
| 4 |
"RobertaModel"
|
| 5 |
],
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "roberta-large",
|
| 3 |
"architectures": [
|
| 4 |
"RobertaModel"
|
| 5 |
],
|
tokenizer_config.json
CHANGED
|
@@ -6,7 +6,7 @@
|
|
| 6 |
"errors": "replace",
|
| 7 |
"mask_token": "<mask>",
|
| 8 |
"model_max_length": 512,
|
| 9 |
-
"name_or_path": "
|
| 10 |
"pad_token": "<pad>",
|
| 11 |
"sep_token": "</s>",
|
| 12 |
"special_tokens_map_file": null,
|
|
|
|
| 6 |
"errors": "replace",
|
| 7 |
"mask_token": "<mask>",
|
| 8 |
"model_max_length": 512,
|
| 9 |
+
"name_or_path": "roberta-large",
|
| 10 |
"pad_token": "<pad>",
|
| 11 |
"sep_token": "</s>",
|
| 12 |
"special_tokens_map_file": null,
|
trainer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"model": "roberta-large", "max_length": 64, "mode": "average_no_mask", "data": "relbert/semeval2012_relational_similarity", "template_mode": "manual", "template": "I wasn\u2019t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>\u2019s <mask>", "loss_function": "info_loob", "temperature_nce_constant": 0.05, "temperature_nce_rank": {"min": 0.01, "max": 0.05, "type": "linear"}, "epoch": 22, "batch": 128, "lr": 5e-06, "lr_decay": false, "lr_warmup": 1, "weight_decay": 0, "random_seed": 0, "exclude_relation": null, "n_sample": 640, "gradient_accumulation": 8}
|
validation_loss.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"validation_loss": 5.024555513698064, "validation_data": "relbert/semeval2012_relational_similarity", "validation_data/exclude_relation": null}
|