model update
Browse files
README.md
CHANGED
|
@@ -14,7 +14,7 @@ model-index:
|
|
| 14 |
metrics:
|
| 15 |
- name: Accuracy
|
| 16 |
type: accuracy
|
| 17 |
-
value:
|
| 18 |
- task:
|
| 19 |
name: Analogy Questions (SAT full)
|
| 20 |
type: multiple-choice-qa
|
|
@@ -25,7 +25,7 @@ model-index:
|
|
| 25 |
metrics:
|
| 26 |
- name: Accuracy
|
| 27 |
type: accuracy
|
| 28 |
-
value:
|
| 29 |
- task:
|
| 30 |
name: Analogy Questions (SAT)
|
| 31 |
type: multiple-choice-qa
|
|
@@ -36,7 +36,7 @@ model-index:
|
|
| 36 |
metrics:
|
| 37 |
- name: Accuracy
|
| 38 |
type: accuracy
|
| 39 |
-
value:
|
| 40 |
- task:
|
| 41 |
name: Analogy Questions (BATS)
|
| 42 |
type: multiple-choice-qa
|
|
@@ -47,7 +47,7 @@ model-index:
|
|
| 47 |
metrics:
|
| 48 |
- name: Accuracy
|
| 49 |
type: accuracy
|
| 50 |
-
value:
|
| 51 |
- task:
|
| 52 |
name: Analogy Questions (Google)
|
| 53 |
type: multiple-choice-qa
|
|
@@ -58,7 +58,7 @@ model-index:
|
|
| 58 |
metrics:
|
| 59 |
- name: Accuracy
|
| 60 |
type: accuracy
|
| 61 |
-
value:
|
| 62 |
- task:
|
| 63 |
name: Analogy Questions (U2)
|
| 64 |
type: multiple-choice-qa
|
|
@@ -69,7 +69,7 @@ model-index:
|
|
| 69 |
metrics:
|
| 70 |
- name: Accuracy
|
| 71 |
type: accuracy
|
| 72 |
-
value:
|
| 73 |
- task:
|
| 74 |
name: Analogy Questions (U4)
|
| 75 |
type: multiple-choice-qa
|
|
@@ -80,7 +80,7 @@ model-index:
|
|
| 80 |
metrics:
|
| 81 |
- name: Accuracy
|
| 82 |
type: accuracy
|
| 83 |
-
value:
|
| 84 |
- task:
|
| 85 |
name: Lexical Relation Classification (BLESS)
|
| 86 |
type: classification
|
|
@@ -91,10 +91,10 @@ model-index:
|
|
| 91 |
metrics:
|
| 92 |
- name: F1
|
| 93 |
type: f1
|
| 94 |
-
value:
|
| 95 |
- name: F1 (macro)
|
| 96 |
type: f1_macro
|
| 97 |
-
value:
|
| 98 |
- task:
|
| 99 |
name: Lexical Relation Classification (CogALexV)
|
| 100 |
type: classification
|
|
@@ -105,10 +105,10 @@ model-index:
|
|
| 105 |
metrics:
|
| 106 |
- name: F1
|
| 107 |
type: f1
|
| 108 |
-
value:
|
| 109 |
- name: F1 (macro)
|
| 110 |
type: f1_macro
|
| 111 |
-
value:
|
| 112 |
- task:
|
| 113 |
name: Lexical Relation Classification (EVALution)
|
| 114 |
type: classification
|
|
@@ -119,10 +119,10 @@ model-index:
|
|
| 119 |
metrics:
|
| 120 |
- name: F1
|
| 121 |
type: f1
|
| 122 |
-
value:
|
| 123 |
- name: F1 (macro)
|
| 124 |
type: f1_macro
|
| 125 |
-
value:
|
| 126 |
- task:
|
| 127 |
name: Lexical Relation Classification (K&H+N)
|
| 128 |
type: classification
|
|
@@ -133,10 +133,10 @@ model-index:
|
|
| 133 |
metrics:
|
| 134 |
- name: F1
|
| 135 |
type: f1
|
| 136 |
-
value:
|
| 137 |
- name: F1 (macro)
|
| 138 |
type: f1_macro
|
| 139 |
-
value:
|
| 140 |
- task:
|
| 141 |
name: Lexical Relation Classification (ROOT09)
|
| 142 |
type: classification
|
|
@@ -147,10 +147,10 @@ model-index:
|
|
| 147 |
metrics:
|
| 148 |
- name: F1
|
| 149 |
type: f1
|
| 150 |
-
value:
|
| 151 |
- name: F1 (macro)
|
| 152 |
type: f1_macro
|
| 153 |
-
value:
|
| 154 |
|
| 155 |
---
|
| 156 |
# relbert/roberta-large-semeval2012-mask-prompt-c-loob-conceptnet-validated
|
|
@@ -160,20 +160,20 @@ RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
|
|
| 160 |
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
|
| 161 |
It achieves the following results on the relation understanding tasks:
|
| 162 |
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-loob-conceptnet-validated/raw/main/analogy.json)):
|
| 163 |
-
- Accuracy on SAT (full):
|
| 164 |
-
- Accuracy on SAT:
|
| 165 |
-
- Accuracy on BATS:
|
| 166 |
-
- Accuracy on U2:
|
| 167 |
-
- Accuracy on U4:
|
| 168 |
-
- Accuracy on Google:
|
| 169 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-loob-conceptnet-validated/raw/main/classification.json)):
|
| 170 |
-
- Micro F1 score on BLESS:
|
| 171 |
-
- Micro F1 score on CogALexV:
|
| 172 |
-
- Micro F1 score on EVALution:
|
| 173 |
-
- Micro F1 score on K&H+N:
|
| 174 |
-
- Micro F1 score on ROOT09:
|
| 175 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-loob-conceptnet-validated/raw/main/relation_mapping.json)):
|
| 176 |
-
- Accuracy on Relation Mapping:
|
| 177 |
|
| 178 |
|
| 179 |
### Usage
|
|
|
|
| 14 |
metrics:
|
| 15 |
- name: Accuracy
|
| 16 |
type: accuracy
|
| 17 |
+
value: 0.8453174603174604
|
| 18 |
- task:
|
| 19 |
name: Analogy Questions (SAT full)
|
| 20 |
type: multiple-choice-qa
|
|
|
|
| 25 |
metrics:
|
| 26 |
- name: Accuracy
|
| 27 |
type: accuracy
|
| 28 |
+
value: 0.6310160427807486
|
| 29 |
- task:
|
| 30 |
name: Analogy Questions (SAT)
|
| 31 |
type: multiple-choice-qa
|
|
|
|
| 36 |
metrics:
|
| 37 |
- name: Accuracy
|
| 38 |
type: accuracy
|
| 39 |
+
value: 0.6379821958456974
|
| 40 |
- task:
|
| 41 |
name: Analogy Questions (BATS)
|
| 42 |
type: multiple-choice-qa
|
|
|
|
| 47 |
metrics:
|
| 48 |
- name: Accuracy
|
| 49 |
type: accuracy
|
| 50 |
+
value: 0.7581989994441356
|
| 51 |
- task:
|
| 52 |
name: Analogy Questions (Google)
|
| 53 |
type: multiple-choice-qa
|
|
|
|
| 58 |
metrics:
|
| 59 |
- name: Accuracy
|
| 60 |
type: accuracy
|
| 61 |
+
value: 0.912
|
| 62 |
- task:
|
| 63 |
name: Analogy Questions (U2)
|
| 64 |
type: multiple-choice-qa
|
|
|
|
| 69 |
metrics:
|
| 70 |
- name: Accuracy
|
| 71 |
type: accuracy
|
| 72 |
+
value: 0.5131578947368421
|
| 73 |
- task:
|
| 74 |
name: Analogy Questions (U4)
|
| 75 |
type: multiple-choice-qa
|
|
|
|
| 80 |
metrics:
|
| 81 |
- name: Accuracy
|
| 82 |
type: accuracy
|
| 83 |
+
value: 0.6087962962962963
|
| 84 |
- task:
|
| 85 |
name: Lexical Relation Classification (BLESS)
|
| 86 |
type: classification
|
|
|
|
| 91 |
metrics:
|
| 92 |
- name: F1
|
| 93 |
type: f1
|
| 94 |
+
value: 0.9308422480036161
|
| 95 |
- name: F1 (macro)
|
| 96 |
type: f1_macro
|
| 97 |
+
value: 0.9259132485159167
|
| 98 |
- task:
|
| 99 |
name: Lexical Relation Classification (CogALexV)
|
| 100 |
type: classification
|
|
|
|
| 105 |
metrics:
|
| 106 |
- name: F1
|
| 107 |
type: f1
|
| 108 |
+
value: 0.8812206572769953
|
| 109 |
- name: F1 (macro)
|
| 110 |
type: f1_macro
|
| 111 |
+
value: 0.7406199625428094
|
| 112 |
- task:
|
| 113 |
name: Lexical Relation Classification (EVALution)
|
| 114 |
type: classification
|
|
|
|
| 119 |
metrics:
|
| 120 |
- name: F1
|
| 121 |
type: f1
|
| 122 |
+
value: 0.7231852654387866
|
| 123 |
- name: F1 (macro)
|
| 124 |
type: f1_macro
|
| 125 |
+
value: 0.7092518484577178
|
| 126 |
- task:
|
| 127 |
name: Lexical Relation Classification (K&H+N)
|
| 128 |
type: classification
|
|
|
|
| 133 |
metrics:
|
| 134 |
- name: F1
|
| 135 |
type: f1
|
| 136 |
+
value: 0.9675871183139737
|
| 137 |
- name: F1 (macro)
|
| 138 |
type: f1_macro
|
| 139 |
+
value: 0.9013308490394988
|
| 140 |
- task:
|
| 141 |
name: Lexical Relation Classification (ROOT09)
|
| 142 |
type: classification
|
|
|
|
| 147 |
metrics:
|
| 148 |
- name: F1
|
| 149 |
type: f1
|
| 150 |
+
value: 0.9160137887809464
|
| 151 |
- name: F1 (macro)
|
| 152 |
type: f1_macro
|
| 153 |
+
value: 0.9146918325555718
|
| 154 |
|
| 155 |
---
|
| 156 |
# relbert/roberta-large-semeval2012-mask-prompt-c-loob-conceptnet-validated
|
|
|
|
| 160 |
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
|
| 161 |
It achieves the following results on the relation understanding tasks:
|
| 162 |
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-loob-conceptnet-validated/raw/main/analogy.json)):
|
| 163 |
+
- Accuracy on SAT (full): 0.6310160427807486
|
| 164 |
+
- Accuracy on SAT: 0.6379821958456974
|
| 165 |
+
- Accuracy on BATS: 0.7581989994441356
|
| 166 |
+
- Accuracy on U2: 0.5131578947368421
|
| 167 |
+
- Accuracy on U4: 0.6087962962962963
|
| 168 |
+
- Accuracy on Google: 0.912
|
| 169 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-loob-conceptnet-validated/raw/main/classification.json)):
|
| 170 |
+
- Micro F1 score on BLESS: 0.9308422480036161
|
| 171 |
+
- Micro F1 score on CogALexV: 0.8812206572769953
|
| 172 |
+
- Micro F1 score on EVALution: 0.7231852654387866
|
| 173 |
+
- Micro F1 score on K&H+N: 0.9675871183139737
|
| 174 |
+
- Micro F1 score on ROOT09: 0.9160137887809464
|
| 175 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-c-loob-conceptnet-validated/raw/main/relation_mapping.json)):
|
| 176 |
+
- Accuracy on Relation Mapping: 0.8453174603174604
|
| 177 |
|
| 178 |
|
| 179 |
### Usage
|