model update
Browse files
README.md
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
datasets:
|
| 3 |
- relbert/semeval2012_relational_similarity
|
| 4 |
model-index:
|
| 5 |
-
- name: relbert/
|
| 6 |
results:
|
| 7 |
- task:
|
| 8 |
name: Relation Mapping
|
|
@@ -14,7 +14,7 @@ model-index:
|
|
| 14 |
metrics:
|
| 15 |
- name: Accuracy
|
| 16 |
type: accuracy
|
| 17 |
-
value: 0.
|
| 18 |
- task:
|
| 19 |
name: Analogy Questions (SAT full)
|
| 20 |
type: multiple-choice-qa
|
|
@@ -153,27 +153,27 @@ model-index:
|
|
| 153 |
value: 0.9109123462416034
|
| 154 |
|
| 155 |
---
|
| 156 |
-
# relbert/
|
| 157 |
|
| 158 |
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
|
| 159 |
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
|
| 160 |
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
|
| 161 |
It achieves the following results on the relation understanding tasks:
|
| 162 |
-
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/
|
| 163 |
- Accuracy on SAT (full): 0.7058823529411765
|
| 164 |
- Accuracy on SAT: 0.7002967359050445
|
| 165 |
- Accuracy on BATS: 0.8121178432462479
|
| 166 |
- Accuracy on U2: 0.6973684210526315
|
| 167 |
- Accuracy on U4: 0.6550925925925926
|
| 168 |
- Accuracy on Google: 0.944
|
| 169 |
-
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/
|
| 170 |
- Micro F1 score on BLESS: 0.9278288383305711
|
| 171 |
- Micro F1 score on CogALexV: 0.8809859154929578
|
| 172 |
- Micro F1 score on EVALution: 0.7177681473456122
|
| 173 |
- Micro F1 score on K&H+N: 0.9682131181748627
|
| 174 |
- Micro F1 score on ROOT09: 0.914133500470072
|
| 175 |
-
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/
|
| 176 |
-
- Accuracy on Relation Mapping: 0.
|
| 177 |
|
| 178 |
|
| 179 |
### Usage
|
|
@@ -184,7 +184,7 @@ pip install relbert
|
|
| 184 |
and activate model as below.
|
| 185 |
```python
|
| 186 |
from relbert import RelBERT
|
| 187 |
-
model = RelBERT("relbert/
|
| 188 |
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
|
| 189 |
```
|
| 190 |
|
|
@@ -211,7 +211,7 @@ The following hyperparameters were used during training:
|
|
| 211 |
- n_sample: 640
|
| 212 |
- gradient_accumulation: 8
|
| 213 |
|
| 214 |
-
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/
|
| 215 |
|
| 216 |
### Reference
|
| 217 |
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
|
|
|
| 2 |
datasets:
|
| 3 |
- relbert/semeval2012_relational_similarity
|
| 4 |
model-index:
|
| 5 |
+
- name: relbert/roberta-large-semeval2012-mask-prompt-d-loob
|
| 6 |
results:
|
| 7 |
- task:
|
| 8 |
name: Relation Mapping
|
|
|
|
| 14 |
metrics:
|
| 15 |
- name: Accuracy
|
| 16 |
type: accuracy
|
| 17 |
+
value: 0.8978174603174603
|
| 18 |
- task:
|
| 19 |
name: Analogy Questions (SAT full)
|
| 20 |
type: multiple-choice-qa
|
|
|
|
| 153 |
value: 0.9109123462416034
|
| 154 |
|
| 155 |
---
|
| 156 |
+
# relbert/roberta-large-semeval2012-mask-prompt-d-loob
|
| 157 |
|
| 158 |
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
|
| 159 |
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
|
| 160 |
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
|
| 161 |
It achieves the following results on the relation understanding tasks:
|
| 162 |
+
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-loob/raw/main/analogy.json)):
|
| 163 |
- Accuracy on SAT (full): 0.7058823529411765
|
| 164 |
- Accuracy on SAT: 0.7002967359050445
|
| 165 |
- Accuracy on BATS: 0.8121178432462479
|
| 166 |
- Accuracy on U2: 0.6973684210526315
|
| 167 |
- Accuracy on U4: 0.6550925925925926
|
| 168 |
- Accuracy on Google: 0.944
|
| 169 |
+
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-loob/raw/main/classification.json)):
|
| 170 |
- Micro F1 score on BLESS: 0.9278288383305711
|
| 171 |
- Micro F1 score on CogALexV: 0.8809859154929578
|
| 172 |
- Micro F1 score on EVALution: 0.7177681473456122
|
| 173 |
- Micro F1 score on K&H+N: 0.9682131181748627
|
| 174 |
- Micro F1 score on ROOT09: 0.914133500470072
|
| 175 |
+
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-loob/raw/main/relation_mapping.json)):
|
| 176 |
+
- Accuracy on Relation Mapping: 0.8978174603174603
|
| 177 |
|
| 178 |
|
| 179 |
### Usage
|
|
|
|
| 184 |
and activate model as below.
|
| 185 |
```python
|
| 186 |
from relbert import RelBERT
|
| 187 |
+
model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-d-loob")
|
| 188 |
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
|
| 189 |
```
|
| 190 |
|
|
|
|
| 211 |
- n_sample: 640
|
| 212 |
- gradient_accumulation: 8
|
| 213 |
|
| 214 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-d-loob/raw/main/trainer_config.json).
|
| 215 |
|
| 216 |
### Reference
|
| 217 |
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|