--- library_name: transformers license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: CIDAUTv2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9259259259259259 --- # CIDAUTv2 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2719 - Accuracy: 0.9259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 0.7322 | 0.5880 | | No log | 2.0 | 8 | 0.6585 | 0.5972 | | 0.7438 | 3.0 | 12 | 0.6115 | 0.7222 | | 0.7438 | 4.0 | 16 | 0.5726 | 0.7546 | | 0.5781 | 5.0 | 20 | 0.4803 | 0.7824 | | 0.5781 | 6.0 | 24 | 0.4627 | 0.8333 | | 0.5781 | 7.0 | 28 | 0.4060 | 0.8056 | | 0.4511 | 8.0 | 32 | 0.3512 | 0.8796 | | 0.4511 | 9.0 | 36 | 0.2725 | 0.9028 | | 0.296 | 10.0 | 40 | 0.2719 | 0.9259 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0