richardprobe commited on
Commit
d5fb74c
·
verified ·
1 Parent(s): 8d3f949

Upload PEFT LoRA adapter

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +35 -0
  2. README.md +3 -3
  3. checkpoint-100/README.md +208 -0
  4. checkpoint-100/adapter_config.json +39 -0
  5. checkpoint-100/adapter_model.safetensors +3 -0
  6. checkpoint-100/added_tokens.json +12 -0
  7. checkpoint-100/chat_template.jinja +1 -0
  8. checkpoint-100/merges.txt +0 -0
  9. checkpoint-100/optimizer.pt +3 -0
  10. checkpoint-100/rng_state.pth +3 -0
  11. checkpoint-100/scheduler.pt +3 -0
  12. checkpoint-100/special_tokens_map.json +30 -0
  13. checkpoint-100/tokenizer.json +3 -0
  14. checkpoint-100/tokenizer_config.json +111 -0
  15. checkpoint-100/trainer_state.json +124 -0
  16. checkpoint-100/training_args.bin +3 -0
  17. checkpoint-100/vocab.json +0 -0
  18. checkpoint-1000/README.md +208 -0
  19. checkpoint-1000/adapter_config.json +39 -0
  20. checkpoint-1000/adapter_model.safetensors +3 -0
  21. checkpoint-1000/added_tokens.json +12 -0
  22. checkpoint-1000/chat_template.jinja +1 -0
  23. checkpoint-1000/merges.txt +0 -0
  24. checkpoint-1000/optimizer.pt +3 -0
  25. checkpoint-1000/rng_state.pth +3 -0
  26. checkpoint-1000/scheduler.pt +3 -0
  27. checkpoint-1000/special_tokens_map.json +30 -0
  28. checkpoint-1000/tokenizer.json +3 -0
  29. checkpoint-1000/tokenizer_config.json +111 -0
  30. checkpoint-1000/trainer_state.json +934 -0
  31. checkpoint-1000/training_args.bin +3 -0
  32. checkpoint-1000/vocab.json +0 -0
  33. checkpoint-1100/README.md +208 -0
  34. checkpoint-1100/adapter_config.json +39 -0
  35. checkpoint-1100/adapter_model.safetensors +3 -0
  36. checkpoint-1100/added_tokens.json +12 -0
  37. checkpoint-1100/chat_template.jinja +1 -0
  38. checkpoint-1100/merges.txt +0 -0
  39. checkpoint-1100/optimizer.pt +3 -0
  40. checkpoint-1100/rng_state.pth +3 -0
  41. checkpoint-1100/scheduler.pt +3 -0
  42. checkpoint-1100/special_tokens_map.json +30 -0
  43. checkpoint-1100/tokenizer.json +3 -0
  44. checkpoint-1100/tokenizer_config.json +111 -0
  45. checkpoint-1100/trainer_state.json +1024 -0
  46. checkpoint-1100/training_args.bin +3 -0
  47. checkpoint-1100/vocab.json +0 -0
  48. checkpoint-1200/README.md +208 -0
  49. checkpoint-1200/adapter_config.json +39 -0
  50. checkpoint-1200/adapter_model.safetensors +3 -0
.gitattributes CHANGED
@@ -34,3 +34,38 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-1000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ checkpoint-1100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
40
+ checkpoint-1200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
41
+ checkpoint-1300/tokenizer.json filter=lfs diff=lfs merge=lfs -text
42
+ checkpoint-1400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
43
+ checkpoint-150/tokenizer.json filter=lfs diff=lfs merge=lfs -text
44
+ checkpoint-1500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
45
+ checkpoint-1600/tokenizer.json filter=lfs diff=lfs merge=lfs -text
46
+ checkpoint-1700/tokenizer.json filter=lfs diff=lfs merge=lfs -text
47
+ checkpoint-1800/tokenizer.json filter=lfs diff=lfs merge=lfs -text
48
+ checkpoint-1900/tokenizer.json filter=lfs diff=lfs merge=lfs -text
49
+ checkpoint-200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
50
+ checkpoint-2000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
51
+ checkpoint-2100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
52
+ checkpoint-2200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
53
+ checkpoint-2300/tokenizer.json filter=lfs diff=lfs merge=lfs -text
54
+ checkpoint-2400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
55
+ checkpoint-2500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
56
+ checkpoint-2600/tokenizer.json filter=lfs diff=lfs merge=lfs -text
57
+ checkpoint-2700/tokenizer.json filter=lfs diff=lfs merge=lfs -text
58
+ checkpoint-2800/tokenizer.json filter=lfs diff=lfs merge=lfs -text
59
+ checkpoint-2900/tokenizer.json filter=lfs diff=lfs merge=lfs -text
60
+ checkpoint-300/tokenizer.json filter=lfs diff=lfs merge=lfs -text
61
+ checkpoint-3000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
62
+ checkpoint-3100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
63
+ checkpoint-3200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
64
+ checkpoint-3230/tokenizer.json filter=lfs diff=lfs merge=lfs -text
65
+ checkpoint-400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
66
+ checkpoint-45/tokenizer.json filter=lfs diff=lfs merge=lfs -text
67
+ checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
68
+ checkpoint-600/tokenizer.json filter=lfs diff=lfs merge=lfs -text
69
+ checkpoint-700/tokenizer.json filter=lfs diff=lfs merge=lfs -text
70
+ checkpoint-800/tokenizer.json filter=lfs diff=lfs merge=lfs -text
71
+ checkpoint-900/tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -4,8 +4,8 @@ library_name: transformers
4
  model_name: phi4-mini-chris-assistant-richard-adapter
5
  tags:
6
  - generated_from_trainer
7
- - sft
8
  - trl
 
9
  licence: license
10
  ---
11
 
@@ -20,14 +20,14 @@ It has been trained using [TRL](https://github.com/huggingface/trl).
20
  from transformers import pipeline
21
 
22
  question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
- generator = pipeline("text-generation", model="richardprobe/phi4-mini-chris-assistant-richard-adapter", device="cuda")
24
  output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
  print(output["generated_text"])
26
  ```
27
 
28
  ## Training procedure
29
 
30
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/richardprobe-affirm/phi4-sft/runs/8n4tb9el)
31
 
32
 
33
  This model was trained with SFT.
 
4
  model_name: phi4-mini-chris-assistant-richard-adapter
5
  tags:
6
  - generated_from_trainer
 
7
  - trl
8
+ - sft
9
  licence: license
10
  ---
11
 
 
20
  from transformers import pipeline
21
 
22
  question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="None", device="cuda")
24
  output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
  print(output["generated_text"])
26
  ```
27
 
28
  ## Training procedure
29
 
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/richardprobe-affirm/phi4-sft/runs/yaqz10qw)
31
 
32
 
33
  This model was trained with SFT.
checkpoint-100/README.md ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-4-mini-instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:microsoft/Phi-4-mini-instruct
7
+ - lora
8
+ - sft
9
+ - trl
10
+ ---
11
+
12
+ # Model Card for Model ID
13
+
14
+ <!-- Provide a quick summary of what the model is/does. -->
15
+
16
+
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ <!-- Provide a longer summary of what this model is. -->
23
+
24
+
25
+
26
+ - **Developed by:** [More Information Needed]
27
+ - **Funded by [optional]:** [More Information Needed]
28
+ - **Shared by [optional]:** [More Information Needed]
29
+ - **Model type:** [More Information Needed]
30
+ - **Language(s) (NLP):** [More Information Needed]
31
+ - **License:** [More Information Needed]
32
+ - **Finetuned from model [optional]:** [More Information Needed]
33
+
34
+ ### Model Sources [optional]
35
+
36
+ <!-- Provide the basic links for the model. -->
37
+
38
+ - **Repository:** [More Information Needed]
39
+ - **Paper [optional]:** [More Information Needed]
40
+ - **Demo [optional]:** [More Information Needed]
41
+
42
+ ## Uses
43
+
44
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
+
46
+ ### Direct Use
47
+
48
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Downstream Use [optional]
53
+
54
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
+
56
+ [More Information Needed]
57
+
58
+ ### Out-of-Scope Use
59
+
60
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ## Bias, Risks, and Limitations
65
+
66
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
+
68
+ [More Information Needed]
69
+
70
+ ### Recommendations
71
+
72
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
+
74
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
+
76
+ ## How to Get Started with the Model
77
+
78
+ Use the code below to get started with the model.
79
+
80
+ [More Information Needed]
81
+
82
+ ## Training Details
83
+
84
+ ### Training Data
85
+
86
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
+
88
+ [More Information Needed]
89
+
90
+ ### Training Procedure
91
+
92
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
+
94
+ #### Preprocessing [optional]
95
+
96
+ [More Information Needed]
97
+
98
+
99
+ #### Training Hyperparameters
100
+
101
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
+
103
+ #### Speeds, Sizes, Times [optional]
104
+
105
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
+
107
+ [More Information Needed]
108
+
109
+ ## Evaluation
110
+
111
+ <!-- This section describes the evaluation protocols and provides the results. -->
112
+
113
+ ### Testing Data, Factors & Metrics
114
+
115
+ #### Testing Data
116
+
117
+ <!-- This should link to a Dataset Card if possible. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Factors
122
+
123
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
+
125
+ [More Information Needed]
126
+
127
+ #### Metrics
128
+
129
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
+
131
+ [More Information Needed]
132
+
133
+ ### Results
134
+
135
+ [More Information Needed]
136
+
137
+ #### Summary
138
+
139
+
140
+
141
+ ## Model Examination [optional]
142
+
143
+ <!-- Relevant interpretability work for the model goes here -->
144
+
145
+ [More Information Needed]
146
+
147
+ ## Environmental Impact
148
+
149
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
+
151
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
152
+
153
+ - **Hardware Type:** [More Information Needed]
154
+ - **Hours used:** [More Information Needed]
155
+ - **Cloud Provider:** [More Information Needed]
156
+ - **Compute Region:** [More Information Needed]
157
+ - **Carbon Emitted:** [More Information Needed]
158
+
159
+ ## Technical Specifications [optional]
160
+
161
+ ### Model Architecture and Objective
162
+
163
+ [More Information Needed]
164
+
165
+ ### Compute Infrastructure
166
+
167
+ [More Information Needed]
168
+
169
+ #### Hardware
170
+
171
+ [More Information Needed]
172
+
173
+ #### Software
174
+
175
+ [More Information Needed]
176
+
177
+ ## Citation [optional]
178
+
179
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
180
+
181
+ **BibTeX:**
182
+
183
+ [More Information Needed]
184
+
185
+ **APA:**
186
+
187
+ [More Information Needed]
188
+
189
+ ## Glossary [optional]
190
+
191
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
+
193
+ [More Information Needed]
194
+
195
+ ## More Information [optional]
196
+
197
+ [More Information Needed]
198
+
199
+ ## Model Card Authors [optional]
200
+
201
+ [More Information Needed]
202
+
203
+ ## Model Card Contact
204
+
205
+ [More Information Needed]
206
+ ### Framework versions
207
+
208
+ - PEFT 0.17.0
checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": null,
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 8,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "o_proj",
29
+ "qkv_proj",
30
+ "gate_up_proj",
31
+ "down_proj"
32
+ ],
33
+ "target_parameters": null,
34
+ "task_type": "CAUSAL_LM",
35
+ "trainable_token_indices": null,
36
+ "use_dora": false,
37
+ "use_qalora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91319625d8f60ae1348da53b28976fd07868035e0be7b74118d7501ee5dd2faf
3
+ size 46180160
checkpoint-100/added_tokens.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|/tool_call|>": 200026,
3
+ "<|/tool|>": 200024,
4
+ "<|assistant|>": 200019,
5
+ "<|end|>": 200020,
6
+ "<|system|>": 200022,
7
+ "<|tag|>": 200028,
8
+ "<|tool_call|>": 200025,
9
+ "<|tool_response|>": 200027,
10
+ "<|tool|>": 200023,
11
+ "<|user|>": 200021
12
+ }
checkpoint-100/chat_template.jinja ADDED
@@ -0,0 +1 @@
 
 
1
+ {% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}
checkpoint-100/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd8087e663a3d3a53ce4d7f627136fffb322d60db21f85c25729a0ea2e6d9d72
3
+ size 23729876
checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54bbc2ea79f4a16019a0792b73c8ab158d96bd08662e38b947d6d20a26a71831
3
+ size 14244
checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd30abdd496aef71b7cd1798cb37a3ccba2071ba112e598e6904c15eae4c88b
3
+ size 1064
checkpoint-100/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-100/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:382cc235b56c725945e149cc25f191da667c836655efd0857b004320e90e91ea
3
+ size 15524095
checkpoint-100/tokenizer_config.json ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "199999": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "200018": {
15
+ "content": "<|endofprompt|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "200019": {
23
+ "content": "<|assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "200020": {
31
+ "content": "<|end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": true,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "200021": {
39
+ "content": "<|user|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "200022": {
47
+ "content": "<|system|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "200023": {
55
+ "content": "<|tool|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "200024": {
63
+ "content": "<|/tool|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "200025": {
71
+ "content": "<|tool_call|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "200026": {
79
+ "content": "<|/tool_call|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "200027": {
87
+ "content": "<|tool_response|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "200028": {
95
+ "content": "<|tag|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ }
102
+ },
103
+ "bos_token": "<|endoftext|>",
104
+ "clean_up_tokenization_spaces": false,
105
+ "eos_token": "<|endoftext|>",
106
+ "extra_special_tokens": {},
107
+ "model_max_length": 131072,
108
+ "pad_token": "<|endoftext|>",
109
+ "tokenizer_class": "GPT2Tokenizer",
110
+ "unk_token": "<|endoftext|>"
111
+ }
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.30959752321981426,
6
+ "eval_steps": 500,
7
+ "global_step": 100,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.030959752321981424,
14
+ "grad_norm": 9.773098945617676,
15
+ "learning_rate": 2.991640866873065e-05,
16
+ "loss": 9.245,
17
+ "mean_token_accuracy": 0.2123243510723114,
18
+ "num_tokens": 5327.0,
19
+ "step": 10
20
+ },
21
+ {
22
+ "epoch": 0.06191950464396285,
23
+ "grad_norm": 3.128091335296631,
24
+ "learning_rate": 2.9823529411764707e-05,
25
+ "loss": 6.1602,
26
+ "mean_token_accuracy": 0.25044268518686297,
27
+ "num_tokens": 10795.0,
28
+ "step": 20
29
+ },
30
+ {
31
+ "epoch": 0.09287925696594428,
32
+ "grad_norm": 4.203906536102295,
33
+ "learning_rate": 2.973065015479876e-05,
34
+ "loss": 5.6948,
35
+ "mean_token_accuracy": 0.262071692943573,
36
+ "num_tokens": 16240.0,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.1238390092879257,
41
+ "grad_norm": 4.233511924743652,
42
+ "learning_rate": 2.9637770897832817e-05,
43
+ "loss": 5.2733,
44
+ "mean_token_accuracy": 0.27527774721384046,
45
+ "num_tokens": 21582.0,
46
+ "step": 40
47
+ },
48
+ {
49
+ "epoch": 0.15479876160990713,
50
+ "grad_norm": 7.080459117889404,
51
+ "learning_rate": 2.9544891640866874e-05,
52
+ "loss": 4.9304,
53
+ "mean_token_accuracy": 0.2877007365226746,
54
+ "num_tokens": 27142.0,
55
+ "step": 50
56
+ },
57
+ {
58
+ "epoch": 0.18575851393188855,
59
+ "grad_norm": 7.273204326629639,
60
+ "learning_rate": 2.945201238390093e-05,
61
+ "loss": 4.689,
62
+ "mean_token_accuracy": 0.28890604972839357,
63
+ "num_tokens": 32801.0,
64
+ "step": 60
65
+ },
66
+ {
67
+ "epoch": 0.21671826625386997,
68
+ "grad_norm": 2.2185206413269043,
69
+ "learning_rate": 2.9359133126934984e-05,
70
+ "loss": 4.3965,
71
+ "mean_token_accuracy": 0.28117197155952456,
72
+ "num_tokens": 38472.0,
73
+ "step": 70
74
+ },
75
+ {
76
+ "epoch": 0.2476780185758514,
77
+ "grad_norm": 2.0464794635772705,
78
+ "learning_rate": 2.926625386996904e-05,
79
+ "loss": 4.062,
80
+ "mean_token_accuracy": 0.299494668841362,
81
+ "num_tokens": 43743.0,
82
+ "step": 80
83
+ },
84
+ {
85
+ "epoch": 0.2786377708978328,
86
+ "grad_norm": 1.633155345916748,
87
+ "learning_rate": 2.9173374613003097e-05,
88
+ "loss": 4.0378,
89
+ "mean_token_accuracy": 0.30819864571094513,
90
+ "num_tokens": 49087.0,
91
+ "step": 90
92
+ },
93
+ {
94
+ "epoch": 0.30959752321981426,
95
+ "grad_norm": 1.4594247341156006,
96
+ "learning_rate": 2.908049535603715e-05,
97
+ "loss": 3.8513,
98
+ "mean_token_accuracy": 0.3258361428976059,
99
+ "num_tokens": 54433.0,
100
+ "step": 100
101
+ }
102
+ ],
103
+ "logging_steps": 10,
104
+ "max_steps": 3230,
105
+ "num_input_tokens_seen": 0,
106
+ "num_train_epochs": 10,
107
+ "save_steps": 100,
108
+ "stateful_callbacks": {
109
+ "TrainerControl": {
110
+ "args": {
111
+ "should_epoch_stop": false,
112
+ "should_evaluate": false,
113
+ "should_log": false,
114
+ "should_save": true,
115
+ "should_training_stop": false
116
+ },
117
+ "attributes": {}
118
+ }
119
+ },
120
+ "total_flos": 2575711755927552.0,
121
+ "train_batch_size": 16,
122
+ "trial_name": null,
123
+ "trial_params": null
124
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:296f00e71697e39b9b96ced2cbda9da38aa0e08c1dfa73c8eef3c62051e61b76
3
+ size 5688
checkpoint-100/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/README.md ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-4-mini-instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:microsoft/Phi-4-mini-instruct
7
+ - lora
8
+ - sft
9
+ - trl
10
+ ---
11
+
12
+ # Model Card for Model ID
13
+
14
+ <!-- Provide a quick summary of what the model is/does. -->
15
+
16
+
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ <!-- Provide a longer summary of what this model is. -->
23
+
24
+
25
+
26
+ - **Developed by:** [More Information Needed]
27
+ - **Funded by [optional]:** [More Information Needed]
28
+ - **Shared by [optional]:** [More Information Needed]
29
+ - **Model type:** [More Information Needed]
30
+ - **Language(s) (NLP):** [More Information Needed]
31
+ - **License:** [More Information Needed]
32
+ - **Finetuned from model [optional]:** [More Information Needed]
33
+
34
+ ### Model Sources [optional]
35
+
36
+ <!-- Provide the basic links for the model. -->
37
+
38
+ - **Repository:** [More Information Needed]
39
+ - **Paper [optional]:** [More Information Needed]
40
+ - **Demo [optional]:** [More Information Needed]
41
+
42
+ ## Uses
43
+
44
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
+
46
+ ### Direct Use
47
+
48
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Downstream Use [optional]
53
+
54
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
+
56
+ [More Information Needed]
57
+
58
+ ### Out-of-Scope Use
59
+
60
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ## Bias, Risks, and Limitations
65
+
66
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
+
68
+ [More Information Needed]
69
+
70
+ ### Recommendations
71
+
72
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
+
74
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
+
76
+ ## How to Get Started with the Model
77
+
78
+ Use the code below to get started with the model.
79
+
80
+ [More Information Needed]
81
+
82
+ ## Training Details
83
+
84
+ ### Training Data
85
+
86
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
+
88
+ [More Information Needed]
89
+
90
+ ### Training Procedure
91
+
92
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
+
94
+ #### Preprocessing [optional]
95
+
96
+ [More Information Needed]
97
+
98
+
99
+ #### Training Hyperparameters
100
+
101
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
+
103
+ #### Speeds, Sizes, Times [optional]
104
+
105
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
+
107
+ [More Information Needed]
108
+
109
+ ## Evaluation
110
+
111
+ <!-- This section describes the evaluation protocols and provides the results. -->
112
+
113
+ ### Testing Data, Factors & Metrics
114
+
115
+ #### Testing Data
116
+
117
+ <!-- This should link to a Dataset Card if possible. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Factors
122
+
123
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
+
125
+ [More Information Needed]
126
+
127
+ #### Metrics
128
+
129
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
+
131
+ [More Information Needed]
132
+
133
+ ### Results
134
+
135
+ [More Information Needed]
136
+
137
+ #### Summary
138
+
139
+
140
+
141
+ ## Model Examination [optional]
142
+
143
+ <!-- Relevant interpretability work for the model goes here -->
144
+
145
+ [More Information Needed]
146
+
147
+ ## Environmental Impact
148
+
149
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
+
151
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
152
+
153
+ - **Hardware Type:** [More Information Needed]
154
+ - **Hours used:** [More Information Needed]
155
+ - **Cloud Provider:** [More Information Needed]
156
+ - **Compute Region:** [More Information Needed]
157
+ - **Carbon Emitted:** [More Information Needed]
158
+
159
+ ## Technical Specifications [optional]
160
+
161
+ ### Model Architecture and Objective
162
+
163
+ [More Information Needed]
164
+
165
+ ### Compute Infrastructure
166
+
167
+ [More Information Needed]
168
+
169
+ #### Hardware
170
+
171
+ [More Information Needed]
172
+
173
+ #### Software
174
+
175
+ [More Information Needed]
176
+
177
+ ## Citation [optional]
178
+
179
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
180
+
181
+ **BibTeX:**
182
+
183
+ [More Information Needed]
184
+
185
+ **APA:**
186
+
187
+ [More Information Needed]
188
+
189
+ ## Glossary [optional]
190
+
191
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
+
193
+ [More Information Needed]
194
+
195
+ ## More Information [optional]
196
+
197
+ [More Information Needed]
198
+
199
+ ## Model Card Authors [optional]
200
+
201
+ [More Information Needed]
202
+
203
+ ## Model Card Contact
204
+
205
+ [More Information Needed]
206
+ ### Framework versions
207
+
208
+ - PEFT 0.17.0
checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": null,
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 8,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "o_proj",
29
+ "qkv_proj",
30
+ "gate_up_proj",
31
+ "down_proj"
32
+ ],
33
+ "target_parameters": null,
34
+ "task_type": "CAUSAL_LM",
35
+ "trainable_token_indices": null,
36
+ "use_dora": false,
37
+ "use_qalora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3a19217a72f4f435b3c0feb553d8680d4e6622d67921a3abe08a6c16d18c114
3
+ size 46180160
checkpoint-1000/added_tokens.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|/tool_call|>": 200026,
3
+ "<|/tool|>": 200024,
4
+ "<|assistant|>": 200019,
5
+ "<|end|>": 200020,
6
+ "<|system|>": 200022,
7
+ "<|tag|>": 200028,
8
+ "<|tool_call|>": 200025,
9
+ "<|tool_response|>": 200027,
10
+ "<|tool|>": 200023,
11
+ "<|user|>": 200021
12
+ }
checkpoint-1000/chat_template.jinja ADDED
@@ -0,0 +1 @@
 
 
1
+ {% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}
checkpoint-1000/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddc424f690ddca9db01118d7b2e29215381612092e44b4416018af78c17d9a38
3
+ size 23730132
checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6bdb3399f463db6211f3e676aa698e6638671cdb3c1227d65b10fd6ba298374
3
+ size 14244
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9013719f8428580a3d85a62cc94bd1a0079dda9afa264b03341baf21a502b18b
3
+ size 1064
checkpoint-1000/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:382cc235b56c725945e149cc25f191da667c836655efd0857b004320e90e91ea
3
+ size 15524095
checkpoint-1000/tokenizer_config.json ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "199999": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "200018": {
15
+ "content": "<|endofprompt|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "200019": {
23
+ "content": "<|assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "200020": {
31
+ "content": "<|end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": true,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "200021": {
39
+ "content": "<|user|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "200022": {
47
+ "content": "<|system|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "200023": {
55
+ "content": "<|tool|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "200024": {
63
+ "content": "<|/tool|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "200025": {
71
+ "content": "<|tool_call|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "200026": {
79
+ "content": "<|/tool_call|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "200027": {
87
+ "content": "<|tool_response|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "200028": {
95
+ "content": "<|tag|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ }
102
+ },
103
+ "bos_token": "<|endoftext|>",
104
+ "clean_up_tokenization_spaces": false,
105
+ "eos_token": "<|endoftext|>",
106
+ "extra_special_tokens": {},
107
+ "model_max_length": 131072,
108
+ "pad_token": "<|endoftext|>",
109
+ "tokenizer_class": "GPT2Tokenizer",
110
+ "unk_token": "<|endoftext|>"
111
+ }
checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,934 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0959752321981426,
6
+ "eval_steps": 500,
7
+ "global_step": 1000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.030959752321981424,
14
+ "grad_norm": 9.773098945617676,
15
+ "learning_rate": 2.991640866873065e-05,
16
+ "loss": 9.245,
17
+ "mean_token_accuracy": 0.2123243510723114,
18
+ "num_tokens": 5327.0,
19
+ "step": 10
20
+ },
21
+ {
22
+ "epoch": 0.06191950464396285,
23
+ "grad_norm": 3.128091335296631,
24
+ "learning_rate": 2.9823529411764707e-05,
25
+ "loss": 6.1602,
26
+ "mean_token_accuracy": 0.25044268518686297,
27
+ "num_tokens": 10795.0,
28
+ "step": 20
29
+ },
30
+ {
31
+ "epoch": 0.09287925696594428,
32
+ "grad_norm": 4.203906536102295,
33
+ "learning_rate": 2.973065015479876e-05,
34
+ "loss": 5.6948,
35
+ "mean_token_accuracy": 0.262071692943573,
36
+ "num_tokens": 16240.0,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.1238390092879257,
41
+ "grad_norm": 4.233511924743652,
42
+ "learning_rate": 2.9637770897832817e-05,
43
+ "loss": 5.2733,
44
+ "mean_token_accuracy": 0.27527774721384046,
45
+ "num_tokens": 21582.0,
46
+ "step": 40
47
+ },
48
+ {
49
+ "epoch": 0.15479876160990713,
50
+ "grad_norm": 7.080459117889404,
51
+ "learning_rate": 2.9544891640866874e-05,
52
+ "loss": 4.9304,
53
+ "mean_token_accuracy": 0.2877007365226746,
54
+ "num_tokens": 27142.0,
55
+ "step": 50
56
+ },
57
+ {
58
+ "epoch": 0.18575851393188855,
59
+ "grad_norm": 7.273204326629639,
60
+ "learning_rate": 2.945201238390093e-05,
61
+ "loss": 4.689,
62
+ "mean_token_accuracy": 0.28890604972839357,
63
+ "num_tokens": 32801.0,
64
+ "step": 60
65
+ },
66
+ {
67
+ "epoch": 0.21671826625386997,
68
+ "grad_norm": 2.2185206413269043,
69
+ "learning_rate": 2.9359133126934984e-05,
70
+ "loss": 4.3965,
71
+ "mean_token_accuracy": 0.28117197155952456,
72
+ "num_tokens": 38472.0,
73
+ "step": 70
74
+ },
75
+ {
76
+ "epoch": 0.2476780185758514,
77
+ "grad_norm": 2.0464794635772705,
78
+ "learning_rate": 2.926625386996904e-05,
79
+ "loss": 4.062,
80
+ "mean_token_accuracy": 0.299494668841362,
81
+ "num_tokens": 43743.0,
82
+ "step": 80
83
+ },
84
+ {
85
+ "epoch": 0.2786377708978328,
86
+ "grad_norm": 1.633155345916748,
87
+ "learning_rate": 2.9173374613003097e-05,
88
+ "loss": 4.0378,
89
+ "mean_token_accuracy": 0.30819864571094513,
90
+ "num_tokens": 49087.0,
91
+ "step": 90
92
+ },
93
+ {
94
+ "epoch": 0.30959752321981426,
95
+ "grad_norm": 1.4594247341156006,
96
+ "learning_rate": 2.908049535603715e-05,
97
+ "loss": 3.8513,
98
+ "mean_token_accuracy": 0.3258361428976059,
99
+ "num_tokens": 54433.0,
100
+ "step": 100
101
+ },
102
+ {
103
+ "epoch": 0.34055727554179566,
104
+ "grad_norm": 1.5312635898590088,
105
+ "learning_rate": 2.898761609907121e-05,
106
+ "loss": 3.9162,
107
+ "mean_token_accuracy": 0.32140363454818727,
108
+ "num_tokens": 59629.0,
109
+ "step": 110
110
+ },
111
+ {
112
+ "epoch": 0.3715170278637771,
113
+ "grad_norm": 1.3190491199493408,
114
+ "learning_rate": 2.8894736842105263e-05,
115
+ "loss": 3.902,
116
+ "mean_token_accuracy": 0.3103078156709671,
117
+ "num_tokens": 65326.0,
118
+ "step": 120
119
+ },
120
+ {
121
+ "epoch": 0.4024767801857585,
122
+ "grad_norm": 1.6095689535140991,
123
+ "learning_rate": 2.880185758513932e-05,
124
+ "loss": 3.7107,
125
+ "mean_token_accuracy": 0.3353793561458588,
126
+ "num_tokens": 70440.0,
127
+ "step": 130
128
+ },
129
+ {
130
+ "epoch": 0.43343653250773995,
131
+ "grad_norm": 1.6634972095489502,
132
+ "learning_rate": 2.8708978328173377e-05,
133
+ "loss": 3.7747,
134
+ "mean_token_accuracy": 0.3298566401004791,
135
+ "num_tokens": 75712.0,
136
+ "step": 140
137
+ },
138
+ {
139
+ "epoch": 0.46439628482972134,
140
+ "grad_norm": 1.3906605243682861,
141
+ "learning_rate": 2.861609907120743e-05,
142
+ "loss": 3.7344,
143
+ "mean_token_accuracy": 0.34043932259082793,
144
+ "num_tokens": 81272.0,
145
+ "step": 150
146
+ },
147
+ {
148
+ "epoch": 0.4953560371517028,
149
+ "grad_norm": 1.6273926496505737,
150
+ "learning_rate": 2.8523219814241487e-05,
151
+ "loss": 3.6722,
152
+ "mean_token_accuracy": 0.33802524507045745,
153
+ "num_tokens": 86836.0,
154
+ "step": 160
155
+ },
156
+ {
157
+ "epoch": 0.5263157894736842,
158
+ "grad_norm": 1.595566987991333,
159
+ "learning_rate": 2.8430340557275543e-05,
160
+ "loss": 3.5486,
161
+ "mean_token_accuracy": 0.36929037272930143,
162
+ "num_tokens": 91622.0,
163
+ "step": 170
164
+ },
165
+ {
166
+ "epoch": 0.5572755417956656,
167
+ "grad_norm": 1.9571454524993896,
168
+ "learning_rate": 2.83374613003096e-05,
169
+ "loss": 3.6849,
170
+ "mean_token_accuracy": 0.3387055486440659,
171
+ "num_tokens": 97019.0,
172
+ "step": 180
173
+ },
174
+ {
175
+ "epoch": 0.5882352941176471,
176
+ "grad_norm": 1.6203333139419556,
177
+ "learning_rate": 2.8244582043343653e-05,
178
+ "loss": 3.5592,
179
+ "mean_token_accuracy": 0.36260710954666137,
180
+ "num_tokens": 102273.0,
181
+ "step": 190
182
+ },
183
+ {
184
+ "epoch": 0.6191950464396285,
185
+ "grad_norm": 1.8625439405441284,
186
+ "learning_rate": 2.815170278637771e-05,
187
+ "loss": 3.4542,
188
+ "mean_token_accuracy": 0.3554231733083725,
189
+ "num_tokens": 107847.0,
190
+ "step": 200
191
+ },
192
+ {
193
+ "epoch": 0.6501547987616099,
194
+ "grad_norm": 1.5171610116958618,
195
+ "learning_rate": 2.8058823529411766e-05,
196
+ "loss": 3.6914,
197
+ "mean_token_accuracy": 0.3506886214017868,
198
+ "num_tokens": 113499.0,
199
+ "step": 210
200
+ },
201
+ {
202
+ "epoch": 0.6811145510835913,
203
+ "grad_norm": 1.465408205986023,
204
+ "learning_rate": 2.796594427244582e-05,
205
+ "loss": 3.6008,
206
+ "mean_token_accuracy": 0.3558589071035385,
207
+ "num_tokens": 119014.0,
208
+ "step": 220
209
+ },
210
+ {
211
+ "epoch": 0.7120743034055728,
212
+ "grad_norm": 1.5382874011993408,
213
+ "learning_rate": 2.787306501547988e-05,
214
+ "loss": 3.5375,
215
+ "mean_token_accuracy": 0.3548148155212402,
216
+ "num_tokens": 124170.0,
217
+ "step": 230
218
+ },
219
+ {
220
+ "epoch": 0.7430340557275542,
221
+ "grad_norm": 1.773881196975708,
222
+ "learning_rate": 2.7780185758513933e-05,
223
+ "loss": 3.573,
224
+ "mean_token_accuracy": 0.3465736091136932,
225
+ "num_tokens": 129487.0,
226
+ "step": 240
227
+ },
228
+ {
229
+ "epoch": 0.7739938080495357,
230
+ "grad_norm": 1.7652744054794312,
231
+ "learning_rate": 2.7687306501547986e-05,
232
+ "loss": 3.6811,
233
+ "mean_token_accuracy": 0.33623204231262205,
234
+ "num_tokens": 135007.0,
235
+ "step": 250
236
+ },
237
+ {
238
+ "epoch": 0.804953560371517,
239
+ "grad_norm": 1.7662419080734253,
240
+ "learning_rate": 2.7594427244582046e-05,
241
+ "loss": 3.505,
242
+ "mean_token_accuracy": 0.3567329585552216,
243
+ "num_tokens": 140143.0,
244
+ "step": 260
245
+ },
246
+ {
247
+ "epoch": 0.8359133126934984,
248
+ "grad_norm": 1.9441474676132202,
249
+ "learning_rate": 2.75015479876161e-05,
250
+ "loss": 3.4804,
251
+ "mean_token_accuracy": 0.36218210160732267,
252
+ "num_tokens": 145363.0,
253
+ "step": 270
254
+ },
255
+ {
256
+ "epoch": 0.8668730650154799,
257
+ "grad_norm": 1.745896816253662,
258
+ "learning_rate": 2.7408668730650156e-05,
259
+ "loss": 3.6519,
260
+ "mean_token_accuracy": 0.34941086173057556,
261
+ "num_tokens": 150840.0,
262
+ "step": 280
263
+ },
264
+ {
265
+ "epoch": 0.8978328173374613,
266
+ "grad_norm": 1.928284764289856,
267
+ "learning_rate": 2.7315789473684213e-05,
268
+ "loss": 3.6138,
269
+ "mean_token_accuracy": 0.34826839864254,
270
+ "num_tokens": 156077.0,
271
+ "step": 290
272
+ },
273
+ {
274
+ "epoch": 0.9287925696594427,
275
+ "grad_norm": 2.177100896835327,
276
+ "learning_rate": 2.722291021671827e-05,
277
+ "loss": 3.4666,
278
+ "mean_token_accuracy": 0.36537405848503113,
279
+ "num_tokens": 160953.0,
280
+ "step": 300
281
+ },
282
+ {
283
+ "epoch": 0.9597523219814241,
284
+ "grad_norm": 2.203282594680786,
285
+ "learning_rate": 2.7130030959752322e-05,
286
+ "loss": 3.5842,
287
+ "mean_token_accuracy": 0.34776660799980164,
288
+ "num_tokens": 166286.0,
289
+ "step": 310
290
+ },
291
+ {
292
+ "epoch": 0.9907120743034056,
293
+ "grad_norm": 1.724373459815979,
294
+ "learning_rate": 2.7037151702786376e-05,
295
+ "loss": 3.4961,
296
+ "mean_token_accuracy": 0.35577190220355986,
297
+ "num_tokens": 171629.0,
298
+ "step": 320
299
+ },
300
+ {
301
+ "epoch": 1.021671826625387,
302
+ "grad_norm": 1.7433867454528809,
303
+ "learning_rate": 2.6944272445820436e-05,
304
+ "loss": 3.4088,
305
+ "mean_token_accuracy": 0.36975419521331787,
306
+ "num_tokens": 176968.0,
307
+ "step": 330
308
+ },
309
+ {
310
+ "epoch": 1.0526315789473684,
311
+ "grad_norm": 2.0577471256256104,
312
+ "learning_rate": 2.685139318885449e-05,
313
+ "loss": 3.5364,
314
+ "mean_token_accuracy": 0.35527182221412656,
315
+ "num_tokens": 182390.0,
316
+ "step": 340
317
+ },
318
+ {
319
+ "epoch": 1.08359133126935,
320
+ "grad_norm": 1.7357635498046875,
321
+ "learning_rate": 2.6758513931888546e-05,
322
+ "loss": 3.4495,
323
+ "mean_token_accuracy": 0.3565235286951065,
324
+ "num_tokens": 188181.0,
325
+ "step": 350
326
+ },
327
+ {
328
+ "epoch": 1.1145510835913313,
329
+ "grad_norm": 2.024507761001587,
330
+ "learning_rate": 2.6665634674922602e-05,
331
+ "loss": 3.3766,
332
+ "mean_token_accuracy": 0.3696540713310242,
333
+ "num_tokens": 193427.0,
334
+ "step": 360
335
+ },
336
+ {
337
+ "epoch": 1.1455108359133126,
338
+ "grad_norm": 2.1170592308044434,
339
+ "learning_rate": 2.6572755417956655e-05,
340
+ "loss": 3.4759,
341
+ "mean_token_accuracy": 0.35803447663784027,
342
+ "num_tokens": 199046.0,
343
+ "step": 370
344
+ },
345
+ {
346
+ "epoch": 1.1764705882352942,
347
+ "grad_norm": 2.118878126144409,
348
+ "learning_rate": 2.6479876160990712e-05,
349
+ "loss": 3.4685,
350
+ "mean_token_accuracy": 0.3570233076810837,
351
+ "num_tokens": 204089.0,
352
+ "step": 380
353
+ },
354
+ {
355
+ "epoch": 1.2074303405572755,
356
+ "grad_norm": 2.2280914783477783,
357
+ "learning_rate": 2.638699690402477e-05,
358
+ "loss": 3.4822,
359
+ "mean_token_accuracy": 0.36153341829776764,
360
+ "num_tokens": 209656.0,
361
+ "step": 390
362
+ },
363
+ {
364
+ "epoch": 1.238390092879257,
365
+ "grad_norm": 2.444979667663574,
366
+ "learning_rate": 2.6294117647058825e-05,
367
+ "loss": 3.3666,
368
+ "mean_token_accuracy": 0.3748770415782928,
369
+ "num_tokens": 214465.0,
370
+ "step": 400
371
+ },
372
+ {
373
+ "epoch": 1.2693498452012384,
374
+ "grad_norm": 1.9609659910202026,
375
+ "learning_rate": 2.620123839009288e-05,
376
+ "loss": 3.4161,
377
+ "mean_token_accuracy": 0.3594685852527618,
378
+ "num_tokens": 219728.0,
379
+ "step": 410
380
+ },
381
+ {
382
+ "epoch": 1.3003095975232197,
383
+ "grad_norm": 1.9759095907211304,
384
+ "learning_rate": 2.6108359133126935e-05,
385
+ "loss": 3.405,
386
+ "mean_token_accuracy": 0.3668099522590637,
387
+ "num_tokens": 224992.0,
388
+ "step": 420
389
+ },
390
+ {
391
+ "epoch": 1.3312693498452013,
392
+ "grad_norm": 2.1737940311431885,
393
+ "learning_rate": 2.6015479876160992e-05,
394
+ "loss": 3.3809,
395
+ "mean_token_accuracy": 0.37462269365787504,
396
+ "num_tokens": 230431.0,
397
+ "step": 430
398
+ },
399
+ {
400
+ "epoch": 1.3622291021671826,
401
+ "grad_norm": 2.475351333618164,
402
+ "learning_rate": 2.5922600619195045e-05,
403
+ "loss": 3.3454,
404
+ "mean_token_accuracy": 0.36902076900005343,
405
+ "num_tokens": 235868.0,
406
+ "step": 440
407
+ },
408
+ {
409
+ "epoch": 1.3931888544891642,
410
+ "grad_norm": 2.1027772426605225,
411
+ "learning_rate": 2.5829721362229105e-05,
412
+ "loss": 3.3967,
413
+ "mean_token_accuracy": 0.3779816538095474,
414
+ "num_tokens": 241149.0,
415
+ "step": 450
416
+ },
417
+ {
418
+ "epoch": 1.4241486068111455,
419
+ "grad_norm": 2.613186836242676,
420
+ "learning_rate": 2.5736842105263158e-05,
421
+ "loss": 3.3383,
422
+ "mean_token_accuracy": 0.37455591559410095,
423
+ "num_tokens": 246200.0,
424
+ "step": 460
425
+ },
426
+ {
427
+ "epoch": 1.4551083591331269,
428
+ "grad_norm": 2.1689629554748535,
429
+ "learning_rate": 2.5643962848297215e-05,
430
+ "loss": 3.4927,
431
+ "mean_token_accuracy": 0.3641968876123428,
432
+ "num_tokens": 251354.0,
433
+ "step": 470
434
+ },
435
+ {
436
+ "epoch": 1.4860681114551084,
437
+ "grad_norm": 1.9075849056243896,
438
+ "learning_rate": 2.555108359133127e-05,
439
+ "loss": 3.4211,
440
+ "mean_token_accuracy": 0.3670921057462692,
441
+ "num_tokens": 257201.0,
442
+ "step": 480
443
+ },
444
+ {
445
+ "epoch": 1.5170278637770898,
446
+ "grad_norm": 2.128737211227417,
447
+ "learning_rate": 2.5458204334365325e-05,
448
+ "loss": 3.3306,
449
+ "mean_token_accuracy": 0.3747966349124908,
450
+ "num_tokens": 262640.0,
451
+ "step": 490
452
+ },
453
+ {
454
+ "epoch": 1.5479876160990713,
455
+ "grad_norm": 1.9061874151229858,
456
+ "learning_rate": 2.536532507739938e-05,
457
+ "loss": 3.3874,
458
+ "mean_token_accuracy": 0.3706284284591675,
459
+ "num_tokens": 268129.0,
460
+ "step": 500
461
+ },
462
+ {
463
+ "epoch": 1.5789473684210527,
464
+ "grad_norm": 1.8868329524993896,
465
+ "learning_rate": 2.5272445820433438e-05,
466
+ "loss": 3.3185,
467
+ "mean_token_accuracy": 0.37699449956417086,
468
+ "num_tokens": 273489.0,
469
+ "step": 510
470
+ },
471
+ {
472
+ "epoch": 1.609907120743034,
473
+ "grad_norm": 1.8507658243179321,
474
+ "learning_rate": 2.5179566563467495e-05,
475
+ "loss": 3.2901,
476
+ "mean_token_accuracy": 0.3797824054956436,
477
+ "num_tokens": 279142.0,
478
+ "step": 520
479
+ },
480
+ {
481
+ "epoch": 1.6408668730650153,
482
+ "grad_norm": 2.396951198577881,
483
+ "learning_rate": 2.5086687306501548e-05,
484
+ "loss": 3.3503,
485
+ "mean_token_accuracy": 0.37934728860855105,
486
+ "num_tokens": 284049.0,
487
+ "step": 530
488
+ },
489
+ {
490
+ "epoch": 1.671826625386997,
491
+ "grad_norm": 2.256753921508789,
492
+ "learning_rate": 2.4993808049535605e-05,
493
+ "loss": 3.3706,
494
+ "mean_token_accuracy": 0.38219387233257296,
495
+ "num_tokens": 289514.0,
496
+ "step": 540
497
+ },
498
+ {
499
+ "epoch": 1.7027863777089784,
500
+ "grad_norm": 1.9369879961013794,
501
+ "learning_rate": 2.490092879256966e-05,
502
+ "loss": 3.3615,
503
+ "mean_token_accuracy": 0.37476457953453063,
504
+ "num_tokens": 295091.0,
505
+ "step": 550
506
+ },
507
+ {
508
+ "epoch": 1.7337461300309598,
509
+ "grad_norm": 2.6628825664520264,
510
+ "learning_rate": 2.4808049535603714e-05,
511
+ "loss": 3.3121,
512
+ "mean_token_accuracy": 0.3830788493156433,
513
+ "num_tokens": 300102.0,
514
+ "step": 560
515
+ },
516
+ {
517
+ "epoch": 1.7647058823529411,
518
+ "grad_norm": 2.6188621520996094,
519
+ "learning_rate": 2.4715170278637774e-05,
520
+ "loss": 3.4005,
521
+ "mean_token_accuracy": 0.3631168991327286,
522
+ "num_tokens": 305652.0,
523
+ "step": 570
524
+ },
525
+ {
526
+ "epoch": 1.7956656346749225,
527
+ "grad_norm": 2.093585968017578,
528
+ "learning_rate": 2.4622291021671828e-05,
529
+ "loss": 3.4483,
530
+ "mean_token_accuracy": 0.3639900177717209,
531
+ "num_tokens": 311333.0,
532
+ "step": 580
533
+ },
534
+ {
535
+ "epoch": 1.826625386996904,
536
+ "grad_norm": 2.355714797973633,
537
+ "learning_rate": 2.452941176470588e-05,
538
+ "loss": 3.2946,
539
+ "mean_token_accuracy": 0.3784641414880753,
540
+ "num_tokens": 316699.0,
541
+ "step": 590
542
+ },
543
+ {
544
+ "epoch": 1.8575851393188856,
545
+ "grad_norm": 2.5051403045654297,
546
+ "learning_rate": 2.4436532507739938e-05,
547
+ "loss": 3.2612,
548
+ "mean_token_accuracy": 0.3874821364879608,
549
+ "num_tokens": 321718.0,
550
+ "step": 600
551
+ },
552
+ {
553
+ "epoch": 1.888544891640867,
554
+ "grad_norm": 2.4884731769561768,
555
+ "learning_rate": 2.4343653250773994e-05,
556
+ "loss": 3.3375,
557
+ "mean_token_accuracy": 0.37331779301166534,
558
+ "num_tokens": 327347.0,
559
+ "step": 610
560
+ },
561
+ {
562
+ "epoch": 1.9195046439628483,
563
+ "grad_norm": 2.7246131896972656,
564
+ "learning_rate": 2.425077399380805e-05,
565
+ "loss": 3.3235,
566
+ "mean_token_accuracy": 0.38473727405071256,
567
+ "num_tokens": 332563.0,
568
+ "step": 620
569
+ },
570
+ {
571
+ "epoch": 1.9504643962848296,
572
+ "grad_norm": 2.420604705810547,
573
+ "learning_rate": 2.4157894736842104e-05,
574
+ "loss": 3.4027,
575
+ "mean_token_accuracy": 0.36371313631534574,
576
+ "num_tokens": 337880.0,
577
+ "step": 630
578
+ },
579
+ {
580
+ "epoch": 1.9814241486068112,
581
+ "grad_norm": 2.1465680599212646,
582
+ "learning_rate": 2.4065015479876164e-05,
583
+ "loss": 3.3508,
584
+ "mean_token_accuracy": 0.3747645616531372,
585
+ "num_tokens": 343193.0,
586
+ "step": 640
587
+ },
588
+ {
589
+ "epoch": 2.0123839009287927,
590
+ "grad_norm": 2.0795834064483643,
591
+ "learning_rate": 2.3972136222910217e-05,
592
+ "loss": 3.3529,
593
+ "mean_token_accuracy": 0.3744541972875595,
594
+ "num_tokens": 348460.0,
595
+ "step": 650
596
+ },
597
+ {
598
+ "epoch": 2.043343653250774,
599
+ "grad_norm": 2.4051778316497803,
600
+ "learning_rate": 2.387925696594427e-05,
601
+ "loss": 3.2404,
602
+ "mean_token_accuracy": 0.38319246768951415,
603
+ "num_tokens": 353701.0,
604
+ "step": 660
605
+ },
606
+ {
607
+ "epoch": 2.0743034055727554,
608
+ "grad_norm": 2.401045322418213,
609
+ "learning_rate": 2.378637770897833e-05,
610
+ "loss": 3.2801,
611
+ "mean_token_accuracy": 0.3773155301809311,
612
+ "num_tokens": 359147.0,
613
+ "step": 670
614
+ },
615
+ {
616
+ "epoch": 2.1052631578947367,
617
+ "grad_norm": 2.554138422012329,
618
+ "learning_rate": 2.3693498452012384e-05,
619
+ "loss": 3.2227,
620
+ "mean_token_accuracy": 0.37754152715206146,
621
+ "num_tokens": 364696.0,
622
+ "step": 680
623
+ },
624
+ {
625
+ "epoch": 2.136222910216718,
626
+ "grad_norm": 2.4874625205993652,
627
+ "learning_rate": 2.360061919504644e-05,
628
+ "loss": 3.2534,
629
+ "mean_token_accuracy": 0.3920708328485489,
630
+ "num_tokens": 370207.0,
631
+ "step": 690
632
+ },
633
+ {
634
+ "epoch": 2.1671826625387,
635
+ "grad_norm": 2.638068675994873,
636
+ "learning_rate": 2.3507739938080497e-05,
637
+ "loss": 3.2635,
638
+ "mean_token_accuracy": 0.3835586577653885,
639
+ "num_tokens": 375977.0,
640
+ "step": 700
641
+ },
642
+ {
643
+ "epoch": 2.198142414860681,
644
+ "grad_norm": 2.5179686546325684,
645
+ "learning_rate": 2.341486068111455e-05,
646
+ "loss": 3.1599,
647
+ "mean_token_accuracy": 0.39867666363716125,
648
+ "num_tokens": 381398.0,
649
+ "step": 710
650
+ },
651
+ {
652
+ "epoch": 2.2291021671826625,
653
+ "grad_norm": 2.9102959632873535,
654
+ "learning_rate": 2.3321981424148607e-05,
655
+ "loss": 3.2686,
656
+ "mean_token_accuracy": 0.3878729552030563,
657
+ "num_tokens": 386460.0,
658
+ "step": 720
659
+ },
660
+ {
661
+ "epoch": 2.260061919504644,
662
+ "grad_norm": 2.641160726547241,
663
+ "learning_rate": 2.3229102167182663e-05,
664
+ "loss": 3.2218,
665
+ "mean_token_accuracy": 0.38672482669353486,
666
+ "num_tokens": 391538.0,
667
+ "step": 730
668
+ },
669
+ {
670
+ "epoch": 2.291021671826625,
671
+ "grad_norm": 2.947000026702881,
672
+ "learning_rate": 2.313622291021672e-05,
673
+ "loss": 3.2215,
674
+ "mean_token_accuracy": 0.38650966584682467,
675
+ "num_tokens": 396881.0,
676
+ "step": 740
677
+ },
678
+ {
679
+ "epoch": 2.321981424148607,
680
+ "grad_norm": 2.3614673614501953,
681
+ "learning_rate": 2.3043343653250773e-05,
682
+ "loss": 3.2233,
683
+ "mean_token_accuracy": 0.388895845413208,
684
+ "num_tokens": 402418.0,
685
+ "step": 750
686
+ },
687
+ {
688
+ "epoch": 2.3529411764705883,
689
+ "grad_norm": 2.492814302444458,
690
+ "learning_rate": 2.295046439628483e-05,
691
+ "loss": 3.2005,
692
+ "mean_token_accuracy": 0.382270821928978,
693
+ "num_tokens": 407733.0,
694
+ "step": 760
695
+ },
696
+ {
697
+ "epoch": 2.3839009287925697,
698
+ "grad_norm": 2.646655321121216,
699
+ "learning_rate": 2.2857585139318887e-05,
700
+ "loss": 3.1642,
701
+ "mean_token_accuracy": 0.388735693693161,
702
+ "num_tokens": 413101.0,
703
+ "step": 770
704
+ },
705
+ {
706
+ "epoch": 2.414860681114551,
707
+ "grad_norm": 2.782440662384033,
708
+ "learning_rate": 2.276470588235294e-05,
709
+ "loss": 3.2513,
710
+ "mean_token_accuracy": 0.38574750125408175,
711
+ "num_tokens": 418754.0,
712
+ "step": 780
713
+ },
714
+ {
715
+ "epoch": 2.4458204334365323,
716
+ "grad_norm": 2.7094547748565674,
717
+ "learning_rate": 2.2671826625387e-05,
718
+ "loss": 3.3007,
719
+ "mean_token_accuracy": 0.38453402519226076,
720
+ "num_tokens": 424232.0,
721
+ "step": 790
722
+ },
723
+ {
724
+ "epoch": 2.476780185758514,
725
+ "grad_norm": 2.697098970413208,
726
+ "learning_rate": 2.2578947368421053e-05,
727
+ "loss": 3.254,
728
+ "mean_token_accuracy": 0.3893850326538086,
729
+ "num_tokens": 429369.0,
730
+ "step": 800
731
+ },
732
+ {
733
+ "epoch": 2.5077399380804954,
734
+ "grad_norm": 3.2908523082733154,
735
+ "learning_rate": 2.248606811145511e-05,
736
+ "loss": 3.1944,
737
+ "mean_token_accuracy": 0.39619002044200896,
738
+ "num_tokens": 434497.0,
739
+ "step": 810
740
+ },
741
+ {
742
+ "epoch": 2.538699690402477,
743
+ "grad_norm": 3.068455696105957,
744
+ "learning_rate": 2.2393188854489166e-05,
745
+ "loss": 3.2034,
746
+ "mean_token_accuracy": 0.3942800432443619,
747
+ "num_tokens": 439892.0,
748
+ "step": 820
749
+ },
750
+ {
751
+ "epoch": 2.569659442724458,
752
+ "grad_norm": 2.7893826961517334,
753
+ "learning_rate": 2.230030959752322e-05,
754
+ "loss": 3.0723,
755
+ "mean_token_accuracy": 0.39791189730167387,
756
+ "num_tokens": 445189.0,
757
+ "step": 830
758
+ },
759
+ {
760
+ "epoch": 2.6006191950464395,
761
+ "grad_norm": 2.7569446563720703,
762
+ "learning_rate": 2.2207430340557276e-05,
763
+ "loss": 3.187,
764
+ "mean_token_accuracy": 0.3884226083755493,
765
+ "num_tokens": 450338.0,
766
+ "step": 840
767
+ },
768
+ {
769
+ "epoch": 2.6315789473684212,
770
+ "grad_norm": 3.16340708732605,
771
+ "learning_rate": 2.2114551083591333e-05,
772
+ "loss": 3.1942,
773
+ "mean_token_accuracy": 0.3921455442905426,
774
+ "num_tokens": 455583.0,
775
+ "step": 850
776
+ },
777
+ {
778
+ "epoch": 2.6625386996904026,
779
+ "grad_norm": 2.549273729324341,
780
+ "learning_rate": 2.202167182662539e-05,
781
+ "loss": 3.278,
782
+ "mean_token_accuracy": 0.3782683253288269,
783
+ "num_tokens": 461089.0,
784
+ "step": 860
785
+ },
786
+ {
787
+ "epoch": 2.693498452012384,
788
+ "grad_norm": 3.216149091720581,
789
+ "learning_rate": 2.1928792569659443e-05,
790
+ "loss": 3.2023,
791
+ "mean_token_accuracy": 0.3940991997718811,
792
+ "num_tokens": 466239.0,
793
+ "step": 870
794
+ },
795
+ {
796
+ "epoch": 2.7244582043343653,
797
+ "grad_norm": 2.4680261611938477,
798
+ "learning_rate": 2.18359133126935e-05,
799
+ "loss": 3.2017,
800
+ "mean_token_accuracy": 0.3878098428249359,
801
+ "num_tokens": 471660.0,
802
+ "step": 880
803
+ },
804
+ {
805
+ "epoch": 2.7554179566563466,
806
+ "grad_norm": 3.6166999340057373,
807
+ "learning_rate": 2.1743034055727556e-05,
808
+ "loss": 3.2068,
809
+ "mean_token_accuracy": 0.3789886265993118,
810
+ "num_tokens": 476713.0,
811
+ "step": 890
812
+ },
813
+ {
814
+ "epoch": 2.7863777089783284,
815
+ "grad_norm": 2.0997393131256104,
816
+ "learning_rate": 2.165015479876161e-05,
817
+ "loss": 3.2216,
818
+ "mean_token_accuracy": 0.3913588523864746,
819
+ "num_tokens": 482569.0,
820
+ "step": 900
821
+ },
822
+ {
823
+ "epoch": 2.8173374613003097,
824
+ "grad_norm": 3.0189061164855957,
825
+ "learning_rate": 2.1557275541795666e-05,
826
+ "loss": 3.1346,
827
+ "mean_token_accuracy": 0.3967192888259888,
828
+ "num_tokens": 487629.0,
829
+ "step": 910
830
+ },
831
+ {
832
+ "epoch": 2.848297213622291,
833
+ "grad_norm": 2.8610568046569824,
834
+ "learning_rate": 2.1464396284829722e-05,
835
+ "loss": 3.2061,
836
+ "mean_token_accuracy": 0.3921816825866699,
837
+ "num_tokens": 493227.0,
838
+ "step": 920
839
+ },
840
+ {
841
+ "epoch": 2.8792569659442724,
842
+ "grad_norm": 3.023012638092041,
843
+ "learning_rate": 2.1371517027863776e-05,
844
+ "loss": 3.2208,
845
+ "mean_token_accuracy": 0.3786366432905197,
846
+ "num_tokens": 498394.0,
847
+ "step": 930
848
+ },
849
+ {
850
+ "epoch": 2.9102167182662537,
851
+ "grad_norm": 2.908886194229126,
852
+ "learning_rate": 2.1278637770897832e-05,
853
+ "loss": 3.1648,
854
+ "mean_token_accuracy": 0.3914026439189911,
855
+ "num_tokens": 503752.0,
856
+ "step": 940
857
+ },
858
+ {
859
+ "epoch": 2.9411764705882355,
860
+ "grad_norm": 3.078397750854492,
861
+ "learning_rate": 2.118575851393189e-05,
862
+ "loss": 3.1891,
863
+ "mean_token_accuracy": 0.39542897045612335,
864
+ "num_tokens": 509218.0,
865
+ "step": 950
866
+ },
867
+ {
868
+ "epoch": 2.972136222910217,
869
+ "grad_norm": 2.740389823913574,
870
+ "learning_rate": 2.1092879256965946e-05,
871
+ "loss": 3.1953,
872
+ "mean_token_accuracy": 0.3934174537658691,
873
+ "num_tokens": 514716.0,
874
+ "step": 960
875
+ },
876
+ {
877
+ "epoch": 3.003095975232198,
878
+ "grad_norm": 2.6426961421966553,
879
+ "learning_rate": 2.1e-05,
880
+ "loss": 3.1084,
881
+ "mean_token_accuracy": 0.39845702350139617,
882
+ "num_tokens": 520000.0,
883
+ "step": 970
884
+ },
885
+ {
886
+ "epoch": 3.0340557275541795,
887
+ "grad_norm": 2.8173840045928955,
888
+ "learning_rate": 2.090712074303406e-05,
889
+ "loss": 3.1574,
890
+ "mean_token_accuracy": 0.39481441378593446,
891
+ "num_tokens": 525561.0,
892
+ "step": 980
893
+ },
894
+ {
895
+ "epoch": 3.065015479876161,
896
+ "grad_norm": 3.29856014251709,
897
+ "learning_rate": 2.0814241486068112e-05,
898
+ "loss": 3.0613,
899
+ "mean_token_accuracy": 0.4054213762283325,
900
+ "num_tokens": 531021.0,
901
+ "step": 990
902
+ },
903
+ {
904
+ "epoch": 3.0959752321981426,
905
+ "grad_norm": 3.463890314102173,
906
+ "learning_rate": 2.0721362229102165e-05,
907
+ "loss": 3.0282,
908
+ "mean_token_accuracy": 0.4025467813014984,
909
+ "num_tokens": 536260.0,
910
+ "step": 1000
911
+ }
912
+ ],
913
+ "logging_steps": 10,
914
+ "max_steps": 3230,
915
+ "num_input_tokens_seen": 0,
916
+ "num_train_epochs": 10,
917
+ "save_steps": 100,
918
+ "stateful_callbacks": {
919
+ "TrainerControl": {
920
+ "args": {
921
+ "should_epoch_stop": false,
922
+ "should_evaluate": false,
923
+ "should_log": false,
924
+ "should_save": true,
925
+ "should_training_stop": false
926
+ },
927
+ "attributes": {}
928
+ }
929
+ },
930
+ "total_flos": 2.5176115943768064e+16,
931
+ "train_batch_size": 16,
932
+ "trial_name": null,
933
+ "trial_params": null
934
+ }
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:296f00e71697e39b9b96ced2cbda9da38aa0e08c1dfa73c8eef3c62051e61b76
3
+ size 5688
checkpoint-1000/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1100/README.md ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-4-mini-instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:microsoft/Phi-4-mini-instruct
7
+ - lora
8
+ - sft
9
+ - trl
10
+ ---
11
+
12
+ # Model Card for Model ID
13
+
14
+ <!-- Provide a quick summary of what the model is/does. -->
15
+
16
+
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ <!-- Provide a longer summary of what this model is. -->
23
+
24
+
25
+
26
+ - **Developed by:** [More Information Needed]
27
+ - **Funded by [optional]:** [More Information Needed]
28
+ - **Shared by [optional]:** [More Information Needed]
29
+ - **Model type:** [More Information Needed]
30
+ - **Language(s) (NLP):** [More Information Needed]
31
+ - **License:** [More Information Needed]
32
+ - **Finetuned from model [optional]:** [More Information Needed]
33
+
34
+ ### Model Sources [optional]
35
+
36
+ <!-- Provide the basic links for the model. -->
37
+
38
+ - **Repository:** [More Information Needed]
39
+ - **Paper [optional]:** [More Information Needed]
40
+ - **Demo [optional]:** [More Information Needed]
41
+
42
+ ## Uses
43
+
44
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
+
46
+ ### Direct Use
47
+
48
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Downstream Use [optional]
53
+
54
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
+
56
+ [More Information Needed]
57
+
58
+ ### Out-of-Scope Use
59
+
60
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ## Bias, Risks, and Limitations
65
+
66
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
+
68
+ [More Information Needed]
69
+
70
+ ### Recommendations
71
+
72
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
+
74
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
+
76
+ ## How to Get Started with the Model
77
+
78
+ Use the code below to get started with the model.
79
+
80
+ [More Information Needed]
81
+
82
+ ## Training Details
83
+
84
+ ### Training Data
85
+
86
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
+
88
+ [More Information Needed]
89
+
90
+ ### Training Procedure
91
+
92
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
+
94
+ #### Preprocessing [optional]
95
+
96
+ [More Information Needed]
97
+
98
+
99
+ #### Training Hyperparameters
100
+
101
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
+
103
+ #### Speeds, Sizes, Times [optional]
104
+
105
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
+
107
+ [More Information Needed]
108
+
109
+ ## Evaluation
110
+
111
+ <!-- This section describes the evaluation protocols and provides the results. -->
112
+
113
+ ### Testing Data, Factors & Metrics
114
+
115
+ #### Testing Data
116
+
117
+ <!-- This should link to a Dataset Card if possible. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Factors
122
+
123
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
+
125
+ [More Information Needed]
126
+
127
+ #### Metrics
128
+
129
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
+
131
+ [More Information Needed]
132
+
133
+ ### Results
134
+
135
+ [More Information Needed]
136
+
137
+ #### Summary
138
+
139
+
140
+
141
+ ## Model Examination [optional]
142
+
143
+ <!-- Relevant interpretability work for the model goes here -->
144
+
145
+ [More Information Needed]
146
+
147
+ ## Environmental Impact
148
+
149
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
+
151
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
152
+
153
+ - **Hardware Type:** [More Information Needed]
154
+ - **Hours used:** [More Information Needed]
155
+ - **Cloud Provider:** [More Information Needed]
156
+ - **Compute Region:** [More Information Needed]
157
+ - **Carbon Emitted:** [More Information Needed]
158
+
159
+ ## Technical Specifications [optional]
160
+
161
+ ### Model Architecture and Objective
162
+
163
+ [More Information Needed]
164
+
165
+ ### Compute Infrastructure
166
+
167
+ [More Information Needed]
168
+
169
+ #### Hardware
170
+
171
+ [More Information Needed]
172
+
173
+ #### Software
174
+
175
+ [More Information Needed]
176
+
177
+ ## Citation [optional]
178
+
179
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
180
+
181
+ **BibTeX:**
182
+
183
+ [More Information Needed]
184
+
185
+ **APA:**
186
+
187
+ [More Information Needed]
188
+
189
+ ## Glossary [optional]
190
+
191
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
+
193
+ [More Information Needed]
194
+
195
+ ## More Information [optional]
196
+
197
+ [More Information Needed]
198
+
199
+ ## Model Card Authors [optional]
200
+
201
+ [More Information Needed]
202
+
203
+ ## Model Card Contact
204
+
205
+ [More Information Needed]
206
+ ### Framework versions
207
+
208
+ - PEFT 0.17.0
checkpoint-1100/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": null,
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 8,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "o_proj",
29
+ "qkv_proj",
30
+ "gate_up_proj",
31
+ "down_proj"
32
+ ],
33
+ "target_parameters": null,
34
+ "task_type": "CAUSAL_LM",
35
+ "trainable_token_indices": null,
36
+ "use_dora": false,
37
+ "use_qalora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-1100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99b68570dfc5c8cef3b7322cccad536ace0581a130072ea3a017e1a8769f11a4
3
+ size 46180160
checkpoint-1100/added_tokens.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|/tool_call|>": 200026,
3
+ "<|/tool|>": 200024,
4
+ "<|assistant|>": 200019,
5
+ "<|end|>": 200020,
6
+ "<|system|>": 200022,
7
+ "<|tag|>": 200028,
8
+ "<|tool_call|>": 200025,
9
+ "<|tool_response|>": 200027,
10
+ "<|tool|>": 200023,
11
+ "<|user|>": 200021
12
+ }
checkpoint-1100/chat_template.jinja ADDED
@@ -0,0 +1 @@
 
 
1
+ {% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}
checkpoint-1100/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:260026b347b15ab3356b61459f985d4b0d465e6a001cf59ed5c215c142187b9d
3
+ size 23730132
checkpoint-1100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9ba01db84a4cf090a2b0634e40241e5b1b0a579fb7f75c95cae14b2de68bb84
3
+ size 14244
checkpoint-1100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7362ded16c9d6bd2ce2577825f9d962a8752346ec9a39e48831dca177e699840
3
+ size 1064
checkpoint-1100/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-1100/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:382cc235b56c725945e149cc25f191da667c836655efd0857b004320e90e91ea
3
+ size 15524095
checkpoint-1100/tokenizer_config.json ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "199999": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "200018": {
15
+ "content": "<|endofprompt|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "200019": {
23
+ "content": "<|assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "200020": {
31
+ "content": "<|end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": true,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "200021": {
39
+ "content": "<|user|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "200022": {
47
+ "content": "<|system|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "200023": {
55
+ "content": "<|tool|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "200024": {
63
+ "content": "<|/tool|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "200025": {
71
+ "content": "<|tool_call|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "200026": {
79
+ "content": "<|/tool_call|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "200027": {
87
+ "content": "<|tool_response|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "200028": {
95
+ "content": "<|tag|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ }
102
+ },
103
+ "bos_token": "<|endoftext|>",
104
+ "clean_up_tokenization_spaces": false,
105
+ "eos_token": "<|endoftext|>",
106
+ "extra_special_tokens": {},
107
+ "model_max_length": 131072,
108
+ "pad_token": "<|endoftext|>",
109
+ "tokenizer_class": "GPT2Tokenizer",
110
+ "unk_token": "<|endoftext|>"
111
+ }
checkpoint-1100/trainer_state.json ADDED
@@ -0,0 +1,1024 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.405572755417957,
6
+ "eval_steps": 500,
7
+ "global_step": 1100,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.030959752321981424,
14
+ "grad_norm": 9.773098945617676,
15
+ "learning_rate": 2.991640866873065e-05,
16
+ "loss": 9.245,
17
+ "mean_token_accuracy": 0.2123243510723114,
18
+ "num_tokens": 5327.0,
19
+ "step": 10
20
+ },
21
+ {
22
+ "epoch": 0.06191950464396285,
23
+ "grad_norm": 3.128091335296631,
24
+ "learning_rate": 2.9823529411764707e-05,
25
+ "loss": 6.1602,
26
+ "mean_token_accuracy": 0.25044268518686297,
27
+ "num_tokens": 10795.0,
28
+ "step": 20
29
+ },
30
+ {
31
+ "epoch": 0.09287925696594428,
32
+ "grad_norm": 4.203906536102295,
33
+ "learning_rate": 2.973065015479876e-05,
34
+ "loss": 5.6948,
35
+ "mean_token_accuracy": 0.262071692943573,
36
+ "num_tokens": 16240.0,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.1238390092879257,
41
+ "grad_norm": 4.233511924743652,
42
+ "learning_rate": 2.9637770897832817e-05,
43
+ "loss": 5.2733,
44
+ "mean_token_accuracy": 0.27527774721384046,
45
+ "num_tokens": 21582.0,
46
+ "step": 40
47
+ },
48
+ {
49
+ "epoch": 0.15479876160990713,
50
+ "grad_norm": 7.080459117889404,
51
+ "learning_rate": 2.9544891640866874e-05,
52
+ "loss": 4.9304,
53
+ "mean_token_accuracy": 0.2877007365226746,
54
+ "num_tokens": 27142.0,
55
+ "step": 50
56
+ },
57
+ {
58
+ "epoch": 0.18575851393188855,
59
+ "grad_norm": 7.273204326629639,
60
+ "learning_rate": 2.945201238390093e-05,
61
+ "loss": 4.689,
62
+ "mean_token_accuracy": 0.28890604972839357,
63
+ "num_tokens": 32801.0,
64
+ "step": 60
65
+ },
66
+ {
67
+ "epoch": 0.21671826625386997,
68
+ "grad_norm": 2.2185206413269043,
69
+ "learning_rate": 2.9359133126934984e-05,
70
+ "loss": 4.3965,
71
+ "mean_token_accuracy": 0.28117197155952456,
72
+ "num_tokens": 38472.0,
73
+ "step": 70
74
+ },
75
+ {
76
+ "epoch": 0.2476780185758514,
77
+ "grad_norm": 2.0464794635772705,
78
+ "learning_rate": 2.926625386996904e-05,
79
+ "loss": 4.062,
80
+ "mean_token_accuracy": 0.299494668841362,
81
+ "num_tokens": 43743.0,
82
+ "step": 80
83
+ },
84
+ {
85
+ "epoch": 0.2786377708978328,
86
+ "grad_norm": 1.633155345916748,
87
+ "learning_rate": 2.9173374613003097e-05,
88
+ "loss": 4.0378,
89
+ "mean_token_accuracy": 0.30819864571094513,
90
+ "num_tokens": 49087.0,
91
+ "step": 90
92
+ },
93
+ {
94
+ "epoch": 0.30959752321981426,
95
+ "grad_norm": 1.4594247341156006,
96
+ "learning_rate": 2.908049535603715e-05,
97
+ "loss": 3.8513,
98
+ "mean_token_accuracy": 0.3258361428976059,
99
+ "num_tokens": 54433.0,
100
+ "step": 100
101
+ },
102
+ {
103
+ "epoch": 0.34055727554179566,
104
+ "grad_norm": 1.5312635898590088,
105
+ "learning_rate": 2.898761609907121e-05,
106
+ "loss": 3.9162,
107
+ "mean_token_accuracy": 0.32140363454818727,
108
+ "num_tokens": 59629.0,
109
+ "step": 110
110
+ },
111
+ {
112
+ "epoch": 0.3715170278637771,
113
+ "grad_norm": 1.3190491199493408,
114
+ "learning_rate": 2.8894736842105263e-05,
115
+ "loss": 3.902,
116
+ "mean_token_accuracy": 0.3103078156709671,
117
+ "num_tokens": 65326.0,
118
+ "step": 120
119
+ },
120
+ {
121
+ "epoch": 0.4024767801857585,
122
+ "grad_norm": 1.6095689535140991,
123
+ "learning_rate": 2.880185758513932e-05,
124
+ "loss": 3.7107,
125
+ "mean_token_accuracy": 0.3353793561458588,
126
+ "num_tokens": 70440.0,
127
+ "step": 130
128
+ },
129
+ {
130
+ "epoch": 0.43343653250773995,
131
+ "grad_norm": 1.6634972095489502,
132
+ "learning_rate": 2.8708978328173377e-05,
133
+ "loss": 3.7747,
134
+ "mean_token_accuracy": 0.3298566401004791,
135
+ "num_tokens": 75712.0,
136
+ "step": 140
137
+ },
138
+ {
139
+ "epoch": 0.46439628482972134,
140
+ "grad_norm": 1.3906605243682861,
141
+ "learning_rate": 2.861609907120743e-05,
142
+ "loss": 3.7344,
143
+ "mean_token_accuracy": 0.34043932259082793,
144
+ "num_tokens": 81272.0,
145
+ "step": 150
146
+ },
147
+ {
148
+ "epoch": 0.4953560371517028,
149
+ "grad_norm": 1.6273926496505737,
150
+ "learning_rate": 2.8523219814241487e-05,
151
+ "loss": 3.6722,
152
+ "mean_token_accuracy": 0.33802524507045745,
153
+ "num_tokens": 86836.0,
154
+ "step": 160
155
+ },
156
+ {
157
+ "epoch": 0.5263157894736842,
158
+ "grad_norm": 1.595566987991333,
159
+ "learning_rate": 2.8430340557275543e-05,
160
+ "loss": 3.5486,
161
+ "mean_token_accuracy": 0.36929037272930143,
162
+ "num_tokens": 91622.0,
163
+ "step": 170
164
+ },
165
+ {
166
+ "epoch": 0.5572755417956656,
167
+ "grad_norm": 1.9571454524993896,
168
+ "learning_rate": 2.83374613003096e-05,
169
+ "loss": 3.6849,
170
+ "mean_token_accuracy": 0.3387055486440659,
171
+ "num_tokens": 97019.0,
172
+ "step": 180
173
+ },
174
+ {
175
+ "epoch": 0.5882352941176471,
176
+ "grad_norm": 1.6203333139419556,
177
+ "learning_rate": 2.8244582043343653e-05,
178
+ "loss": 3.5592,
179
+ "mean_token_accuracy": 0.36260710954666137,
180
+ "num_tokens": 102273.0,
181
+ "step": 190
182
+ },
183
+ {
184
+ "epoch": 0.6191950464396285,
185
+ "grad_norm": 1.8625439405441284,
186
+ "learning_rate": 2.815170278637771e-05,
187
+ "loss": 3.4542,
188
+ "mean_token_accuracy": 0.3554231733083725,
189
+ "num_tokens": 107847.0,
190
+ "step": 200
191
+ },
192
+ {
193
+ "epoch": 0.6501547987616099,
194
+ "grad_norm": 1.5171610116958618,
195
+ "learning_rate": 2.8058823529411766e-05,
196
+ "loss": 3.6914,
197
+ "mean_token_accuracy": 0.3506886214017868,
198
+ "num_tokens": 113499.0,
199
+ "step": 210
200
+ },
201
+ {
202
+ "epoch": 0.6811145510835913,
203
+ "grad_norm": 1.465408205986023,
204
+ "learning_rate": 2.796594427244582e-05,
205
+ "loss": 3.6008,
206
+ "mean_token_accuracy": 0.3558589071035385,
207
+ "num_tokens": 119014.0,
208
+ "step": 220
209
+ },
210
+ {
211
+ "epoch": 0.7120743034055728,
212
+ "grad_norm": 1.5382874011993408,
213
+ "learning_rate": 2.787306501547988e-05,
214
+ "loss": 3.5375,
215
+ "mean_token_accuracy": 0.3548148155212402,
216
+ "num_tokens": 124170.0,
217
+ "step": 230
218
+ },
219
+ {
220
+ "epoch": 0.7430340557275542,
221
+ "grad_norm": 1.773881196975708,
222
+ "learning_rate": 2.7780185758513933e-05,
223
+ "loss": 3.573,
224
+ "mean_token_accuracy": 0.3465736091136932,
225
+ "num_tokens": 129487.0,
226
+ "step": 240
227
+ },
228
+ {
229
+ "epoch": 0.7739938080495357,
230
+ "grad_norm": 1.7652744054794312,
231
+ "learning_rate": 2.7687306501547986e-05,
232
+ "loss": 3.6811,
233
+ "mean_token_accuracy": 0.33623204231262205,
234
+ "num_tokens": 135007.0,
235
+ "step": 250
236
+ },
237
+ {
238
+ "epoch": 0.804953560371517,
239
+ "grad_norm": 1.7662419080734253,
240
+ "learning_rate": 2.7594427244582046e-05,
241
+ "loss": 3.505,
242
+ "mean_token_accuracy": 0.3567329585552216,
243
+ "num_tokens": 140143.0,
244
+ "step": 260
245
+ },
246
+ {
247
+ "epoch": 0.8359133126934984,
248
+ "grad_norm": 1.9441474676132202,
249
+ "learning_rate": 2.75015479876161e-05,
250
+ "loss": 3.4804,
251
+ "mean_token_accuracy": 0.36218210160732267,
252
+ "num_tokens": 145363.0,
253
+ "step": 270
254
+ },
255
+ {
256
+ "epoch": 0.8668730650154799,
257
+ "grad_norm": 1.745896816253662,
258
+ "learning_rate": 2.7408668730650156e-05,
259
+ "loss": 3.6519,
260
+ "mean_token_accuracy": 0.34941086173057556,
261
+ "num_tokens": 150840.0,
262
+ "step": 280
263
+ },
264
+ {
265
+ "epoch": 0.8978328173374613,
266
+ "grad_norm": 1.928284764289856,
267
+ "learning_rate": 2.7315789473684213e-05,
268
+ "loss": 3.6138,
269
+ "mean_token_accuracy": 0.34826839864254,
270
+ "num_tokens": 156077.0,
271
+ "step": 290
272
+ },
273
+ {
274
+ "epoch": 0.9287925696594427,
275
+ "grad_norm": 2.177100896835327,
276
+ "learning_rate": 2.722291021671827e-05,
277
+ "loss": 3.4666,
278
+ "mean_token_accuracy": 0.36537405848503113,
279
+ "num_tokens": 160953.0,
280
+ "step": 300
281
+ },
282
+ {
283
+ "epoch": 0.9597523219814241,
284
+ "grad_norm": 2.203282594680786,
285
+ "learning_rate": 2.7130030959752322e-05,
286
+ "loss": 3.5842,
287
+ "mean_token_accuracy": 0.34776660799980164,
288
+ "num_tokens": 166286.0,
289
+ "step": 310
290
+ },
291
+ {
292
+ "epoch": 0.9907120743034056,
293
+ "grad_norm": 1.724373459815979,
294
+ "learning_rate": 2.7037151702786376e-05,
295
+ "loss": 3.4961,
296
+ "mean_token_accuracy": 0.35577190220355986,
297
+ "num_tokens": 171629.0,
298
+ "step": 320
299
+ },
300
+ {
301
+ "epoch": 1.021671826625387,
302
+ "grad_norm": 1.7433867454528809,
303
+ "learning_rate": 2.6944272445820436e-05,
304
+ "loss": 3.4088,
305
+ "mean_token_accuracy": 0.36975419521331787,
306
+ "num_tokens": 176968.0,
307
+ "step": 330
308
+ },
309
+ {
310
+ "epoch": 1.0526315789473684,
311
+ "grad_norm": 2.0577471256256104,
312
+ "learning_rate": 2.685139318885449e-05,
313
+ "loss": 3.5364,
314
+ "mean_token_accuracy": 0.35527182221412656,
315
+ "num_tokens": 182390.0,
316
+ "step": 340
317
+ },
318
+ {
319
+ "epoch": 1.08359133126935,
320
+ "grad_norm": 1.7357635498046875,
321
+ "learning_rate": 2.6758513931888546e-05,
322
+ "loss": 3.4495,
323
+ "mean_token_accuracy": 0.3565235286951065,
324
+ "num_tokens": 188181.0,
325
+ "step": 350
326
+ },
327
+ {
328
+ "epoch": 1.1145510835913313,
329
+ "grad_norm": 2.024507761001587,
330
+ "learning_rate": 2.6665634674922602e-05,
331
+ "loss": 3.3766,
332
+ "mean_token_accuracy": 0.3696540713310242,
333
+ "num_tokens": 193427.0,
334
+ "step": 360
335
+ },
336
+ {
337
+ "epoch": 1.1455108359133126,
338
+ "grad_norm": 2.1170592308044434,
339
+ "learning_rate": 2.6572755417956655e-05,
340
+ "loss": 3.4759,
341
+ "mean_token_accuracy": 0.35803447663784027,
342
+ "num_tokens": 199046.0,
343
+ "step": 370
344
+ },
345
+ {
346
+ "epoch": 1.1764705882352942,
347
+ "grad_norm": 2.118878126144409,
348
+ "learning_rate": 2.6479876160990712e-05,
349
+ "loss": 3.4685,
350
+ "mean_token_accuracy": 0.3570233076810837,
351
+ "num_tokens": 204089.0,
352
+ "step": 380
353
+ },
354
+ {
355
+ "epoch": 1.2074303405572755,
356
+ "grad_norm": 2.2280914783477783,
357
+ "learning_rate": 2.638699690402477e-05,
358
+ "loss": 3.4822,
359
+ "mean_token_accuracy": 0.36153341829776764,
360
+ "num_tokens": 209656.0,
361
+ "step": 390
362
+ },
363
+ {
364
+ "epoch": 1.238390092879257,
365
+ "grad_norm": 2.444979667663574,
366
+ "learning_rate": 2.6294117647058825e-05,
367
+ "loss": 3.3666,
368
+ "mean_token_accuracy": 0.3748770415782928,
369
+ "num_tokens": 214465.0,
370
+ "step": 400
371
+ },
372
+ {
373
+ "epoch": 1.2693498452012384,
374
+ "grad_norm": 1.9609659910202026,
375
+ "learning_rate": 2.620123839009288e-05,
376
+ "loss": 3.4161,
377
+ "mean_token_accuracy": 0.3594685852527618,
378
+ "num_tokens": 219728.0,
379
+ "step": 410
380
+ },
381
+ {
382
+ "epoch": 1.3003095975232197,
383
+ "grad_norm": 1.9759095907211304,
384
+ "learning_rate": 2.6108359133126935e-05,
385
+ "loss": 3.405,
386
+ "mean_token_accuracy": 0.3668099522590637,
387
+ "num_tokens": 224992.0,
388
+ "step": 420
389
+ },
390
+ {
391
+ "epoch": 1.3312693498452013,
392
+ "grad_norm": 2.1737940311431885,
393
+ "learning_rate": 2.6015479876160992e-05,
394
+ "loss": 3.3809,
395
+ "mean_token_accuracy": 0.37462269365787504,
396
+ "num_tokens": 230431.0,
397
+ "step": 430
398
+ },
399
+ {
400
+ "epoch": 1.3622291021671826,
401
+ "grad_norm": 2.475351333618164,
402
+ "learning_rate": 2.5922600619195045e-05,
403
+ "loss": 3.3454,
404
+ "mean_token_accuracy": 0.36902076900005343,
405
+ "num_tokens": 235868.0,
406
+ "step": 440
407
+ },
408
+ {
409
+ "epoch": 1.3931888544891642,
410
+ "grad_norm": 2.1027772426605225,
411
+ "learning_rate": 2.5829721362229105e-05,
412
+ "loss": 3.3967,
413
+ "mean_token_accuracy": 0.3779816538095474,
414
+ "num_tokens": 241149.0,
415
+ "step": 450
416
+ },
417
+ {
418
+ "epoch": 1.4241486068111455,
419
+ "grad_norm": 2.613186836242676,
420
+ "learning_rate": 2.5736842105263158e-05,
421
+ "loss": 3.3383,
422
+ "mean_token_accuracy": 0.37455591559410095,
423
+ "num_tokens": 246200.0,
424
+ "step": 460
425
+ },
426
+ {
427
+ "epoch": 1.4551083591331269,
428
+ "grad_norm": 2.1689629554748535,
429
+ "learning_rate": 2.5643962848297215e-05,
430
+ "loss": 3.4927,
431
+ "mean_token_accuracy": 0.3641968876123428,
432
+ "num_tokens": 251354.0,
433
+ "step": 470
434
+ },
435
+ {
436
+ "epoch": 1.4860681114551084,
437
+ "grad_norm": 1.9075849056243896,
438
+ "learning_rate": 2.555108359133127e-05,
439
+ "loss": 3.4211,
440
+ "mean_token_accuracy": 0.3670921057462692,
441
+ "num_tokens": 257201.0,
442
+ "step": 480
443
+ },
444
+ {
445
+ "epoch": 1.5170278637770898,
446
+ "grad_norm": 2.128737211227417,
447
+ "learning_rate": 2.5458204334365325e-05,
448
+ "loss": 3.3306,
449
+ "mean_token_accuracy": 0.3747966349124908,
450
+ "num_tokens": 262640.0,
451
+ "step": 490
452
+ },
453
+ {
454
+ "epoch": 1.5479876160990713,
455
+ "grad_norm": 1.9061874151229858,
456
+ "learning_rate": 2.536532507739938e-05,
457
+ "loss": 3.3874,
458
+ "mean_token_accuracy": 0.3706284284591675,
459
+ "num_tokens": 268129.0,
460
+ "step": 500
461
+ },
462
+ {
463
+ "epoch": 1.5789473684210527,
464
+ "grad_norm": 1.8868329524993896,
465
+ "learning_rate": 2.5272445820433438e-05,
466
+ "loss": 3.3185,
467
+ "mean_token_accuracy": 0.37699449956417086,
468
+ "num_tokens": 273489.0,
469
+ "step": 510
470
+ },
471
+ {
472
+ "epoch": 1.609907120743034,
473
+ "grad_norm": 1.8507658243179321,
474
+ "learning_rate": 2.5179566563467495e-05,
475
+ "loss": 3.2901,
476
+ "mean_token_accuracy": 0.3797824054956436,
477
+ "num_tokens": 279142.0,
478
+ "step": 520
479
+ },
480
+ {
481
+ "epoch": 1.6408668730650153,
482
+ "grad_norm": 2.396951198577881,
483
+ "learning_rate": 2.5086687306501548e-05,
484
+ "loss": 3.3503,
485
+ "mean_token_accuracy": 0.37934728860855105,
486
+ "num_tokens": 284049.0,
487
+ "step": 530
488
+ },
489
+ {
490
+ "epoch": 1.671826625386997,
491
+ "grad_norm": 2.256753921508789,
492
+ "learning_rate": 2.4993808049535605e-05,
493
+ "loss": 3.3706,
494
+ "mean_token_accuracy": 0.38219387233257296,
495
+ "num_tokens": 289514.0,
496
+ "step": 540
497
+ },
498
+ {
499
+ "epoch": 1.7027863777089784,
500
+ "grad_norm": 1.9369879961013794,
501
+ "learning_rate": 2.490092879256966e-05,
502
+ "loss": 3.3615,
503
+ "mean_token_accuracy": 0.37476457953453063,
504
+ "num_tokens": 295091.0,
505
+ "step": 550
506
+ },
507
+ {
508
+ "epoch": 1.7337461300309598,
509
+ "grad_norm": 2.6628825664520264,
510
+ "learning_rate": 2.4808049535603714e-05,
511
+ "loss": 3.3121,
512
+ "mean_token_accuracy": 0.3830788493156433,
513
+ "num_tokens": 300102.0,
514
+ "step": 560
515
+ },
516
+ {
517
+ "epoch": 1.7647058823529411,
518
+ "grad_norm": 2.6188621520996094,
519
+ "learning_rate": 2.4715170278637774e-05,
520
+ "loss": 3.4005,
521
+ "mean_token_accuracy": 0.3631168991327286,
522
+ "num_tokens": 305652.0,
523
+ "step": 570
524
+ },
525
+ {
526
+ "epoch": 1.7956656346749225,
527
+ "grad_norm": 2.093585968017578,
528
+ "learning_rate": 2.4622291021671828e-05,
529
+ "loss": 3.4483,
530
+ "mean_token_accuracy": 0.3639900177717209,
531
+ "num_tokens": 311333.0,
532
+ "step": 580
533
+ },
534
+ {
535
+ "epoch": 1.826625386996904,
536
+ "grad_norm": 2.355714797973633,
537
+ "learning_rate": 2.452941176470588e-05,
538
+ "loss": 3.2946,
539
+ "mean_token_accuracy": 0.3784641414880753,
540
+ "num_tokens": 316699.0,
541
+ "step": 590
542
+ },
543
+ {
544
+ "epoch": 1.8575851393188856,
545
+ "grad_norm": 2.5051403045654297,
546
+ "learning_rate": 2.4436532507739938e-05,
547
+ "loss": 3.2612,
548
+ "mean_token_accuracy": 0.3874821364879608,
549
+ "num_tokens": 321718.0,
550
+ "step": 600
551
+ },
552
+ {
553
+ "epoch": 1.888544891640867,
554
+ "grad_norm": 2.4884731769561768,
555
+ "learning_rate": 2.4343653250773994e-05,
556
+ "loss": 3.3375,
557
+ "mean_token_accuracy": 0.37331779301166534,
558
+ "num_tokens": 327347.0,
559
+ "step": 610
560
+ },
561
+ {
562
+ "epoch": 1.9195046439628483,
563
+ "grad_norm": 2.7246131896972656,
564
+ "learning_rate": 2.425077399380805e-05,
565
+ "loss": 3.3235,
566
+ "mean_token_accuracy": 0.38473727405071256,
567
+ "num_tokens": 332563.0,
568
+ "step": 620
569
+ },
570
+ {
571
+ "epoch": 1.9504643962848296,
572
+ "grad_norm": 2.420604705810547,
573
+ "learning_rate": 2.4157894736842104e-05,
574
+ "loss": 3.4027,
575
+ "mean_token_accuracy": 0.36371313631534574,
576
+ "num_tokens": 337880.0,
577
+ "step": 630
578
+ },
579
+ {
580
+ "epoch": 1.9814241486068112,
581
+ "grad_norm": 2.1465680599212646,
582
+ "learning_rate": 2.4065015479876164e-05,
583
+ "loss": 3.3508,
584
+ "mean_token_accuracy": 0.3747645616531372,
585
+ "num_tokens": 343193.0,
586
+ "step": 640
587
+ },
588
+ {
589
+ "epoch": 2.0123839009287927,
590
+ "grad_norm": 2.0795834064483643,
591
+ "learning_rate": 2.3972136222910217e-05,
592
+ "loss": 3.3529,
593
+ "mean_token_accuracy": 0.3744541972875595,
594
+ "num_tokens": 348460.0,
595
+ "step": 650
596
+ },
597
+ {
598
+ "epoch": 2.043343653250774,
599
+ "grad_norm": 2.4051778316497803,
600
+ "learning_rate": 2.387925696594427e-05,
601
+ "loss": 3.2404,
602
+ "mean_token_accuracy": 0.38319246768951415,
603
+ "num_tokens": 353701.0,
604
+ "step": 660
605
+ },
606
+ {
607
+ "epoch": 2.0743034055727554,
608
+ "grad_norm": 2.401045322418213,
609
+ "learning_rate": 2.378637770897833e-05,
610
+ "loss": 3.2801,
611
+ "mean_token_accuracy": 0.3773155301809311,
612
+ "num_tokens": 359147.0,
613
+ "step": 670
614
+ },
615
+ {
616
+ "epoch": 2.1052631578947367,
617
+ "grad_norm": 2.554138422012329,
618
+ "learning_rate": 2.3693498452012384e-05,
619
+ "loss": 3.2227,
620
+ "mean_token_accuracy": 0.37754152715206146,
621
+ "num_tokens": 364696.0,
622
+ "step": 680
623
+ },
624
+ {
625
+ "epoch": 2.136222910216718,
626
+ "grad_norm": 2.4874625205993652,
627
+ "learning_rate": 2.360061919504644e-05,
628
+ "loss": 3.2534,
629
+ "mean_token_accuracy": 0.3920708328485489,
630
+ "num_tokens": 370207.0,
631
+ "step": 690
632
+ },
633
+ {
634
+ "epoch": 2.1671826625387,
635
+ "grad_norm": 2.638068675994873,
636
+ "learning_rate": 2.3507739938080497e-05,
637
+ "loss": 3.2635,
638
+ "mean_token_accuracy": 0.3835586577653885,
639
+ "num_tokens": 375977.0,
640
+ "step": 700
641
+ },
642
+ {
643
+ "epoch": 2.198142414860681,
644
+ "grad_norm": 2.5179686546325684,
645
+ "learning_rate": 2.341486068111455e-05,
646
+ "loss": 3.1599,
647
+ "mean_token_accuracy": 0.39867666363716125,
648
+ "num_tokens": 381398.0,
649
+ "step": 710
650
+ },
651
+ {
652
+ "epoch": 2.2291021671826625,
653
+ "grad_norm": 2.9102959632873535,
654
+ "learning_rate": 2.3321981424148607e-05,
655
+ "loss": 3.2686,
656
+ "mean_token_accuracy": 0.3878729552030563,
657
+ "num_tokens": 386460.0,
658
+ "step": 720
659
+ },
660
+ {
661
+ "epoch": 2.260061919504644,
662
+ "grad_norm": 2.641160726547241,
663
+ "learning_rate": 2.3229102167182663e-05,
664
+ "loss": 3.2218,
665
+ "mean_token_accuracy": 0.38672482669353486,
666
+ "num_tokens": 391538.0,
667
+ "step": 730
668
+ },
669
+ {
670
+ "epoch": 2.291021671826625,
671
+ "grad_norm": 2.947000026702881,
672
+ "learning_rate": 2.313622291021672e-05,
673
+ "loss": 3.2215,
674
+ "mean_token_accuracy": 0.38650966584682467,
675
+ "num_tokens": 396881.0,
676
+ "step": 740
677
+ },
678
+ {
679
+ "epoch": 2.321981424148607,
680
+ "grad_norm": 2.3614673614501953,
681
+ "learning_rate": 2.3043343653250773e-05,
682
+ "loss": 3.2233,
683
+ "mean_token_accuracy": 0.388895845413208,
684
+ "num_tokens": 402418.0,
685
+ "step": 750
686
+ },
687
+ {
688
+ "epoch": 2.3529411764705883,
689
+ "grad_norm": 2.492814302444458,
690
+ "learning_rate": 2.295046439628483e-05,
691
+ "loss": 3.2005,
692
+ "mean_token_accuracy": 0.382270821928978,
693
+ "num_tokens": 407733.0,
694
+ "step": 760
695
+ },
696
+ {
697
+ "epoch": 2.3839009287925697,
698
+ "grad_norm": 2.646655321121216,
699
+ "learning_rate": 2.2857585139318887e-05,
700
+ "loss": 3.1642,
701
+ "mean_token_accuracy": 0.388735693693161,
702
+ "num_tokens": 413101.0,
703
+ "step": 770
704
+ },
705
+ {
706
+ "epoch": 2.414860681114551,
707
+ "grad_norm": 2.782440662384033,
708
+ "learning_rate": 2.276470588235294e-05,
709
+ "loss": 3.2513,
710
+ "mean_token_accuracy": 0.38574750125408175,
711
+ "num_tokens": 418754.0,
712
+ "step": 780
713
+ },
714
+ {
715
+ "epoch": 2.4458204334365323,
716
+ "grad_norm": 2.7094547748565674,
717
+ "learning_rate": 2.2671826625387e-05,
718
+ "loss": 3.3007,
719
+ "mean_token_accuracy": 0.38453402519226076,
720
+ "num_tokens": 424232.0,
721
+ "step": 790
722
+ },
723
+ {
724
+ "epoch": 2.476780185758514,
725
+ "grad_norm": 2.697098970413208,
726
+ "learning_rate": 2.2578947368421053e-05,
727
+ "loss": 3.254,
728
+ "mean_token_accuracy": 0.3893850326538086,
729
+ "num_tokens": 429369.0,
730
+ "step": 800
731
+ },
732
+ {
733
+ "epoch": 2.5077399380804954,
734
+ "grad_norm": 3.2908523082733154,
735
+ "learning_rate": 2.248606811145511e-05,
736
+ "loss": 3.1944,
737
+ "mean_token_accuracy": 0.39619002044200896,
738
+ "num_tokens": 434497.0,
739
+ "step": 810
740
+ },
741
+ {
742
+ "epoch": 2.538699690402477,
743
+ "grad_norm": 3.068455696105957,
744
+ "learning_rate": 2.2393188854489166e-05,
745
+ "loss": 3.2034,
746
+ "mean_token_accuracy": 0.3942800432443619,
747
+ "num_tokens": 439892.0,
748
+ "step": 820
749
+ },
750
+ {
751
+ "epoch": 2.569659442724458,
752
+ "grad_norm": 2.7893826961517334,
753
+ "learning_rate": 2.230030959752322e-05,
754
+ "loss": 3.0723,
755
+ "mean_token_accuracy": 0.39791189730167387,
756
+ "num_tokens": 445189.0,
757
+ "step": 830
758
+ },
759
+ {
760
+ "epoch": 2.6006191950464395,
761
+ "grad_norm": 2.7569446563720703,
762
+ "learning_rate": 2.2207430340557276e-05,
763
+ "loss": 3.187,
764
+ "mean_token_accuracy": 0.3884226083755493,
765
+ "num_tokens": 450338.0,
766
+ "step": 840
767
+ },
768
+ {
769
+ "epoch": 2.6315789473684212,
770
+ "grad_norm": 3.16340708732605,
771
+ "learning_rate": 2.2114551083591333e-05,
772
+ "loss": 3.1942,
773
+ "mean_token_accuracy": 0.3921455442905426,
774
+ "num_tokens": 455583.0,
775
+ "step": 850
776
+ },
777
+ {
778
+ "epoch": 2.6625386996904026,
779
+ "grad_norm": 2.549273729324341,
780
+ "learning_rate": 2.202167182662539e-05,
781
+ "loss": 3.278,
782
+ "mean_token_accuracy": 0.3782683253288269,
783
+ "num_tokens": 461089.0,
784
+ "step": 860
785
+ },
786
+ {
787
+ "epoch": 2.693498452012384,
788
+ "grad_norm": 3.216149091720581,
789
+ "learning_rate": 2.1928792569659443e-05,
790
+ "loss": 3.2023,
791
+ "mean_token_accuracy": 0.3940991997718811,
792
+ "num_tokens": 466239.0,
793
+ "step": 870
794
+ },
795
+ {
796
+ "epoch": 2.7244582043343653,
797
+ "grad_norm": 2.4680261611938477,
798
+ "learning_rate": 2.18359133126935e-05,
799
+ "loss": 3.2017,
800
+ "mean_token_accuracy": 0.3878098428249359,
801
+ "num_tokens": 471660.0,
802
+ "step": 880
803
+ },
804
+ {
805
+ "epoch": 2.7554179566563466,
806
+ "grad_norm": 3.6166999340057373,
807
+ "learning_rate": 2.1743034055727556e-05,
808
+ "loss": 3.2068,
809
+ "mean_token_accuracy": 0.3789886265993118,
810
+ "num_tokens": 476713.0,
811
+ "step": 890
812
+ },
813
+ {
814
+ "epoch": 2.7863777089783284,
815
+ "grad_norm": 2.0997393131256104,
816
+ "learning_rate": 2.165015479876161e-05,
817
+ "loss": 3.2216,
818
+ "mean_token_accuracy": 0.3913588523864746,
819
+ "num_tokens": 482569.0,
820
+ "step": 900
821
+ },
822
+ {
823
+ "epoch": 2.8173374613003097,
824
+ "grad_norm": 3.0189061164855957,
825
+ "learning_rate": 2.1557275541795666e-05,
826
+ "loss": 3.1346,
827
+ "mean_token_accuracy": 0.3967192888259888,
828
+ "num_tokens": 487629.0,
829
+ "step": 910
830
+ },
831
+ {
832
+ "epoch": 2.848297213622291,
833
+ "grad_norm": 2.8610568046569824,
834
+ "learning_rate": 2.1464396284829722e-05,
835
+ "loss": 3.2061,
836
+ "mean_token_accuracy": 0.3921816825866699,
837
+ "num_tokens": 493227.0,
838
+ "step": 920
839
+ },
840
+ {
841
+ "epoch": 2.8792569659442724,
842
+ "grad_norm": 3.023012638092041,
843
+ "learning_rate": 2.1371517027863776e-05,
844
+ "loss": 3.2208,
845
+ "mean_token_accuracy": 0.3786366432905197,
846
+ "num_tokens": 498394.0,
847
+ "step": 930
848
+ },
849
+ {
850
+ "epoch": 2.9102167182662537,
851
+ "grad_norm": 2.908886194229126,
852
+ "learning_rate": 2.1278637770897832e-05,
853
+ "loss": 3.1648,
854
+ "mean_token_accuracy": 0.3914026439189911,
855
+ "num_tokens": 503752.0,
856
+ "step": 940
857
+ },
858
+ {
859
+ "epoch": 2.9411764705882355,
860
+ "grad_norm": 3.078397750854492,
861
+ "learning_rate": 2.118575851393189e-05,
862
+ "loss": 3.1891,
863
+ "mean_token_accuracy": 0.39542897045612335,
864
+ "num_tokens": 509218.0,
865
+ "step": 950
866
+ },
867
+ {
868
+ "epoch": 2.972136222910217,
869
+ "grad_norm": 2.740389823913574,
870
+ "learning_rate": 2.1092879256965946e-05,
871
+ "loss": 3.1953,
872
+ "mean_token_accuracy": 0.3934174537658691,
873
+ "num_tokens": 514716.0,
874
+ "step": 960
875
+ },
876
+ {
877
+ "epoch": 3.003095975232198,
878
+ "grad_norm": 2.6426961421966553,
879
+ "learning_rate": 2.1e-05,
880
+ "loss": 3.1084,
881
+ "mean_token_accuracy": 0.39845702350139617,
882
+ "num_tokens": 520000.0,
883
+ "step": 970
884
+ },
885
+ {
886
+ "epoch": 3.0340557275541795,
887
+ "grad_norm": 2.8173840045928955,
888
+ "learning_rate": 2.090712074303406e-05,
889
+ "loss": 3.1574,
890
+ "mean_token_accuracy": 0.39481441378593446,
891
+ "num_tokens": 525561.0,
892
+ "step": 980
893
+ },
894
+ {
895
+ "epoch": 3.065015479876161,
896
+ "grad_norm": 3.29856014251709,
897
+ "learning_rate": 2.0814241486068112e-05,
898
+ "loss": 3.0613,
899
+ "mean_token_accuracy": 0.4054213762283325,
900
+ "num_tokens": 531021.0,
901
+ "step": 990
902
+ },
903
+ {
904
+ "epoch": 3.0959752321981426,
905
+ "grad_norm": 3.463890314102173,
906
+ "learning_rate": 2.0721362229102165e-05,
907
+ "loss": 3.0282,
908
+ "mean_token_accuracy": 0.4025467813014984,
909
+ "num_tokens": 536260.0,
910
+ "step": 1000
911
+ },
912
+ {
913
+ "epoch": 3.126934984520124,
914
+ "grad_norm": 3.134387731552124,
915
+ "learning_rate": 2.0628482972136225e-05,
916
+ "loss": 3.1147,
917
+ "mean_token_accuracy": 0.3955592781305313,
918
+ "num_tokens": 541721.0,
919
+ "step": 1010
920
+ },
921
+ {
922
+ "epoch": 3.1578947368421053,
923
+ "grad_norm": 3.237518072128296,
924
+ "learning_rate": 2.053560371517028e-05,
925
+ "loss": 3.0828,
926
+ "mean_token_accuracy": 0.40579850077629087,
927
+ "num_tokens": 547334.0,
928
+ "step": 1020
929
+ },
930
+ {
931
+ "epoch": 3.1888544891640866,
932
+ "grad_norm": 3.2742724418640137,
933
+ "learning_rate": 2.0442724458204335e-05,
934
+ "loss": 3.0907,
935
+ "mean_token_accuracy": 0.40091423988342284,
936
+ "num_tokens": 552904.0,
937
+ "step": 1030
938
+ },
939
+ {
940
+ "epoch": 3.219814241486068,
941
+ "grad_norm": 3.0646955966949463,
942
+ "learning_rate": 2.0349845201238392e-05,
943
+ "loss": 3.0758,
944
+ "mean_token_accuracy": 0.40378672182559966,
945
+ "num_tokens": 557743.0,
946
+ "step": 1040
947
+ },
948
+ {
949
+ "epoch": 3.2507739938080498,
950
+ "grad_norm": 3.2615506649017334,
951
+ "learning_rate": 2.0256965944272445e-05,
952
+ "loss": 3.0844,
953
+ "mean_token_accuracy": 0.41148235499858854,
954
+ "num_tokens": 563604.0,
955
+ "step": 1050
956
+ },
957
+ {
958
+ "epoch": 3.281733746130031,
959
+ "grad_norm": 3.001723527908325,
960
+ "learning_rate": 2.0164086687306502e-05,
961
+ "loss": 2.9993,
962
+ "mean_token_accuracy": 0.41538413166999816,
963
+ "num_tokens": 568980.0,
964
+ "step": 1060
965
+ },
966
+ {
967
+ "epoch": 3.3126934984520124,
968
+ "grad_norm": 3.545367956161499,
969
+ "learning_rate": 2.007120743034056e-05,
970
+ "loss": 3.0765,
971
+ "mean_token_accuracy": 0.40937572419643403,
972
+ "num_tokens": 573896.0,
973
+ "step": 1070
974
+ },
975
+ {
976
+ "epoch": 3.343653250773994,
977
+ "grad_norm": 3.4989709854125977,
978
+ "learning_rate": 1.9978328173374615e-05,
979
+ "loss": 3.1538,
980
+ "mean_token_accuracy": 0.3883706986904144,
981
+ "num_tokens": 579254.0,
982
+ "step": 1080
983
+ },
984
+ {
985
+ "epoch": 3.374613003095975,
986
+ "grad_norm": 3.964334487915039,
987
+ "learning_rate": 1.9885448916408668e-05,
988
+ "loss": 3.1399,
989
+ "mean_token_accuracy": 0.3968294531106949,
990
+ "num_tokens": 584603.0,
991
+ "step": 1090
992
+ },
993
+ {
994
+ "epoch": 3.405572755417957,
995
+ "grad_norm": 4.132855415344238,
996
+ "learning_rate": 1.9792569659442725e-05,
997
+ "loss": 3.1428,
998
+ "mean_token_accuracy": 0.3817721128463745,
999
+ "num_tokens": 590267.0,
1000
+ "step": 1100
1001
+ }
1002
+ ],
1003
+ "logging_steps": 10,
1004
+ "max_steps": 3230,
1005
+ "num_input_tokens_seen": 0,
1006
+ "num_train_epochs": 10,
1007
+ "save_steps": 100,
1008
+ "stateful_callbacks": {
1009
+ "TrainerControl": {
1010
+ "args": {
1011
+ "should_epoch_stop": false,
1012
+ "should_evaluate": false,
1013
+ "should_log": false,
1014
+ "should_save": true,
1015
+ "should_training_stop": false
1016
+ },
1017
+ "attributes": {}
1018
+ }
1019
+ },
1020
+ "total_flos": 2.778658848011059e+16,
1021
+ "train_batch_size": 16,
1022
+ "trial_name": null,
1023
+ "trial_params": null
1024
+ }
checkpoint-1100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:296f00e71697e39b9b96ced2cbda9da38aa0e08c1dfa73c8eef3c62051e61b76
3
+ size 5688
checkpoint-1100/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1200/README.md ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-4-mini-instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:microsoft/Phi-4-mini-instruct
7
+ - lora
8
+ - sft
9
+ - trl
10
+ ---
11
+
12
+ # Model Card for Model ID
13
+
14
+ <!-- Provide a quick summary of what the model is/does. -->
15
+
16
+
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ <!-- Provide a longer summary of what this model is. -->
23
+
24
+
25
+
26
+ - **Developed by:** [More Information Needed]
27
+ - **Funded by [optional]:** [More Information Needed]
28
+ - **Shared by [optional]:** [More Information Needed]
29
+ - **Model type:** [More Information Needed]
30
+ - **Language(s) (NLP):** [More Information Needed]
31
+ - **License:** [More Information Needed]
32
+ - **Finetuned from model [optional]:** [More Information Needed]
33
+
34
+ ### Model Sources [optional]
35
+
36
+ <!-- Provide the basic links for the model. -->
37
+
38
+ - **Repository:** [More Information Needed]
39
+ - **Paper [optional]:** [More Information Needed]
40
+ - **Demo [optional]:** [More Information Needed]
41
+
42
+ ## Uses
43
+
44
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
+
46
+ ### Direct Use
47
+
48
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Downstream Use [optional]
53
+
54
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
+
56
+ [More Information Needed]
57
+
58
+ ### Out-of-Scope Use
59
+
60
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ## Bias, Risks, and Limitations
65
+
66
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
+
68
+ [More Information Needed]
69
+
70
+ ### Recommendations
71
+
72
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
+
74
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
+
76
+ ## How to Get Started with the Model
77
+
78
+ Use the code below to get started with the model.
79
+
80
+ [More Information Needed]
81
+
82
+ ## Training Details
83
+
84
+ ### Training Data
85
+
86
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
+
88
+ [More Information Needed]
89
+
90
+ ### Training Procedure
91
+
92
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
+
94
+ #### Preprocessing [optional]
95
+
96
+ [More Information Needed]
97
+
98
+
99
+ #### Training Hyperparameters
100
+
101
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
+
103
+ #### Speeds, Sizes, Times [optional]
104
+
105
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
+
107
+ [More Information Needed]
108
+
109
+ ## Evaluation
110
+
111
+ <!-- This section describes the evaluation protocols and provides the results. -->
112
+
113
+ ### Testing Data, Factors & Metrics
114
+
115
+ #### Testing Data
116
+
117
+ <!-- This should link to a Dataset Card if possible. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Factors
122
+
123
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
+
125
+ [More Information Needed]
126
+
127
+ #### Metrics
128
+
129
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
+
131
+ [More Information Needed]
132
+
133
+ ### Results
134
+
135
+ [More Information Needed]
136
+
137
+ #### Summary
138
+
139
+
140
+
141
+ ## Model Examination [optional]
142
+
143
+ <!-- Relevant interpretability work for the model goes here -->
144
+
145
+ [More Information Needed]
146
+
147
+ ## Environmental Impact
148
+
149
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
+
151
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
152
+
153
+ - **Hardware Type:** [More Information Needed]
154
+ - **Hours used:** [More Information Needed]
155
+ - **Cloud Provider:** [More Information Needed]
156
+ - **Compute Region:** [More Information Needed]
157
+ - **Carbon Emitted:** [More Information Needed]
158
+
159
+ ## Technical Specifications [optional]
160
+
161
+ ### Model Architecture and Objective
162
+
163
+ [More Information Needed]
164
+
165
+ ### Compute Infrastructure
166
+
167
+ [More Information Needed]
168
+
169
+ #### Hardware
170
+
171
+ [More Information Needed]
172
+
173
+ #### Software
174
+
175
+ [More Information Needed]
176
+
177
+ ## Citation [optional]
178
+
179
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
180
+
181
+ **BibTeX:**
182
+
183
+ [More Information Needed]
184
+
185
+ **APA:**
186
+
187
+ [More Information Needed]
188
+
189
+ ## Glossary [optional]
190
+
191
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
+
193
+ [More Information Needed]
194
+
195
+ ## More Information [optional]
196
+
197
+ [More Information Needed]
198
+
199
+ ## Model Card Authors [optional]
200
+
201
+ [More Information Needed]
202
+
203
+ ## Model Card Contact
204
+
205
+ [More Information Needed]
206
+ ### Framework versions
207
+
208
+ - PEFT 0.17.0
checkpoint-1200/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": null,
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 8,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "o_proj",
29
+ "qkv_proj",
30
+ "gate_up_proj",
31
+ "down_proj"
32
+ ],
33
+ "target_parameters": null,
34
+ "task_type": "CAUSAL_LM",
35
+ "trainable_token_indices": null,
36
+ "use_dora": false,
37
+ "use_qalora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-1200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1bf0a5134560213b413dcfe52e628044b2b09c2ff73eaa48ce948e028b1e6a7
3
+ size 46180160