richie-ghost commited on
Commit
d706920
·
verified ·
1 Parent(s): d059304

Updating model with the latest version

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,453 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: FacebookAI/roberta-large-mnli
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - pearson_cosine
6
+ - spearman_cosine
7
+ - pearson_manhattan
8
+ - spearman_manhattan
9
+ - pearson_euclidean
10
+ - spearman_euclidean
11
+ - pearson_dot
12
+ - spearman_dot
13
+ - pearson_max
14
+ - spearman_max
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:72338
22
+ - loss:CosineSimilarityLoss
23
+ widget:
24
+ - source_sentence: Do I need to know HTML & CSS to learn javascript?
25
+ sentences:
26
+ - What Would the Piano Chords to "Winter, You Tease" by Layla be?
27
+ - Men playing a sport outside.
28
+ - How do I learn web development as quickly as possible?
29
+ - source_sentence: Isn't it inconsistent to prefer both a well-informed electorate
30
+ and an ignorant jury?
31
+ sentences:
32
+ - Some people like when the electorate is stupid.
33
+ - Two people working on computer
34
+ - How is 0+0+0+0+0+0+0…= undefined?
35
+ - source_sentence: A fluffy white and brown puppy is playing with a white, curly-haired
36
+ puppy.
37
+ sentences:
38
+ - Why is H2O liquid and H2S solid at room temperature?
39
+ - The bird is sitting in a nest.
40
+ - The puppies are playing together.
41
+ - source_sentence: A woman in a blue shirt and sunglasses dancing.
42
+ sentences:
43
+ - The woman is dancing.
44
+ - Is Qatar part of UAE?
45
+ - Two lovers walk together in Paris.
46
+ - source_sentence: A motorbike rider is barreling across a grass lawn.
47
+ sentences:
48
+ - The girl is wearing a shirt.
49
+ - Why doesn't Java have pointers?
50
+ - The rider is outdoors on a motorbike.
51
+ model-index:
52
+ - name: SentenceTransformer based on FacebookAI/roberta-large-mnli
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: eval
59
+ type: eval
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.8457307745816387
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.810079801718123
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.8108388961642436
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.7916598710432559
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.8106363007947738
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.7916399795577503
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.8566895266416593
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.8163029561419852
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.8566895266416593
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.8163029561419852
90
+ name: Spearman Max
91
+ ---
92
+
93
+ # SentenceTransformer based on FacebookAI/roberta-large-mnli
94
+
95
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/roberta-large-mnli](https://huggingface.co/FacebookAI/roberta-large-mnli). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
96
+
97
+ ## Model Details
98
+
99
+ ### Model Description
100
+ - **Model Type:** Sentence Transformer
101
+ - **Base model:** [FacebookAI/roberta-large-mnli](https://huggingface.co/FacebookAI/roberta-large-mnli) <!-- at revision 2a8f12d27941090092df78e4ba6f0928eb5eac98 -->
102
+ - **Maximum Sequence Length:** 512 tokens
103
+ - **Output Dimensionality:** 1024 tokens
104
+ - **Similarity Function:** Cosine Similarity
105
+ <!-- - **Training Dataset:** Unknown -->
106
+ <!-- - **Language:** Unknown -->
107
+ <!-- - **License:** Unknown -->
108
+
109
+ ### Model Sources
110
+
111
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
112
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
113
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
114
+
115
+ ### Full Model Architecture
116
+
117
+ ```
118
+ SentenceTransformer(
119
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
120
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
121
+ )
122
+ ```
123
+
124
+ ## Usage
125
+
126
+ ### Direct Usage (Sentence Transformers)
127
+
128
+ First install the Sentence Transformers library:
129
+
130
+ ```bash
131
+ pip install -U sentence-transformers
132
+ ```
133
+
134
+ Then you can load this model and run inference.
135
+ ```python
136
+ from sentence_transformers import SentenceTransformer
137
+
138
+ # Download from the 🤗 Hub
139
+ model = SentenceTransformer("richie-ghost/sbert_facebook_large_mnli_openVino2")
140
+ # Run inference
141
+ sentences = [
142
+ 'A motorbike rider is barreling across a grass lawn.',
143
+ 'The rider is outdoors on a motorbike.',
144
+ 'The girl is wearing a shirt.',
145
+ ]
146
+ embeddings = model.encode(sentences)
147
+ print(embeddings.shape)
148
+ # [3, 1024]
149
+
150
+ # Get the similarity scores for the embeddings
151
+ similarities = model.similarity(embeddings, embeddings)
152
+ print(similarities.shape)
153
+ # [3, 3]
154
+ ```
155
+
156
+ <!--
157
+ ### Direct Usage (Transformers)
158
+
159
+ <details><summary>Click to see the direct usage in Transformers</summary>
160
+
161
+ </details>
162
+ -->
163
+
164
+ <!--
165
+ ### Downstream Usage (Sentence Transformers)
166
+
167
+ You can finetune this model on your own dataset.
168
+
169
+ <details><summary>Click to expand</summary>
170
+
171
+ </details>
172
+ -->
173
+
174
+ <!--
175
+ ### Out-of-Scope Use
176
+
177
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
178
+ -->
179
+
180
+ ## Evaluation
181
+
182
+ ### Metrics
183
+
184
+ #### Semantic Similarity
185
+ * Dataset: `eval`
186
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
187
+
188
+ | Metric | Value |
189
+ |:-------------------|:-----------|
190
+ | pearson_cosine | 0.8457 |
191
+ | spearman_cosine | 0.8101 |
192
+ | pearson_manhattan | 0.8108 |
193
+ | spearman_manhattan | 0.7917 |
194
+ | pearson_euclidean | 0.8106 |
195
+ | spearman_euclidean | 0.7916 |
196
+ | pearson_dot | 0.8567 |
197
+ | spearman_dot | 0.8163 |
198
+ | pearson_max | 0.8567 |
199
+ | **spearman_max** | **0.8163** |
200
+
201
+ <!--
202
+ ## Bias, Risks and Limitations
203
+
204
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
205
+ -->
206
+
207
+ <!--
208
+ ### Recommendations
209
+
210
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
211
+ -->
212
+
213
+ ## Training Details
214
+
215
+ ### Training Dataset
216
+
217
+ #### Unnamed Dataset
218
+
219
+
220
+ * Size: 72,338 training samples
221
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
222
+ * Approximate statistics based on the first 1000 samples:
223
+ | | sentence_0 | sentence_1 | label |
224
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
225
+ | type | string | string | int |
226
+ | details | <ul><li>min: 5 tokens</li><li>mean: 18.11 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.82 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>0: ~50.70%</li><li>1: ~49.30%</li></ul> |
227
+ * Samples:
228
+ | sentence_0 | sentence_1 | label |
229
+ |:-------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
230
+ | <code>Hows would you create strategies and tactics in various combat situations?</code> | <code>I have girlfriend and their parents accepted for my marriage, I m working in Nagpur but her parents wanted me to shift Bangalore? Is it valid wish?</code> | <code>0</code> |
231
+ | <code>Man from the army speaking with civilian women.</code> | <code>The man is a sergeant</code> | <code>0</code> |
232
+ | <code>An old man with a white shirt and black pants sits on a chair in the opening of a stone tunnel.</code> | <code>Someone has black pants.</code> | <code>1</code> |
233
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
234
+ ```json
235
+ {
236
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
237
+ }
238
+ ```
239
+
240
+ ### Training Hyperparameters
241
+ #### Non-Default Hyperparameters
242
+
243
+ - `eval_strategy`: steps
244
+ - `per_device_train_batch_size`: 16
245
+ - `per_device_eval_batch_size`: 16
246
+ - `num_train_epochs`: 4
247
+ - `multi_dataset_batch_sampler`: round_robin
248
+
249
+ #### All Hyperparameters
250
+ <details><summary>Click to expand</summary>
251
+
252
+ - `overwrite_output_dir`: False
253
+ - `do_predict`: False
254
+ - `eval_strategy`: steps
255
+ - `prediction_loss_only`: True
256
+ - `per_device_train_batch_size`: 16
257
+ - `per_device_eval_batch_size`: 16
258
+ - `per_gpu_train_batch_size`: None
259
+ - `per_gpu_eval_batch_size`: None
260
+ - `gradient_accumulation_steps`: 1
261
+ - `eval_accumulation_steps`: None
262
+ - `torch_empty_cache_steps`: None
263
+ - `learning_rate`: 5e-05
264
+ - `weight_decay`: 0.0
265
+ - `adam_beta1`: 0.9
266
+ - `adam_beta2`: 0.999
267
+ - `adam_epsilon`: 1e-08
268
+ - `max_grad_norm`: 1
269
+ - `num_train_epochs`: 4
270
+ - `max_steps`: -1
271
+ - `lr_scheduler_type`: linear
272
+ - `lr_scheduler_kwargs`: {}
273
+ - `warmup_ratio`: 0.0
274
+ - `warmup_steps`: 0
275
+ - `log_level`: passive
276
+ - `log_level_replica`: warning
277
+ - `log_on_each_node`: True
278
+ - `logging_nan_inf_filter`: True
279
+ - `save_safetensors`: True
280
+ - `save_on_each_node`: False
281
+ - `save_only_model`: False
282
+ - `restore_callback_states_from_checkpoint`: False
283
+ - `no_cuda`: False
284
+ - `use_cpu`: False
285
+ - `use_mps_device`: False
286
+ - `seed`: 42
287
+ - `data_seed`: None
288
+ - `jit_mode_eval`: False
289
+ - `use_ipex`: False
290
+ - `bf16`: False
291
+ - `fp16`: False
292
+ - `fp16_opt_level`: O1
293
+ - `half_precision_backend`: auto
294
+ - `bf16_full_eval`: False
295
+ - `fp16_full_eval`: False
296
+ - `tf32`: None
297
+ - `local_rank`: 0
298
+ - `ddp_backend`: None
299
+ - `tpu_num_cores`: None
300
+ - `tpu_metrics_debug`: False
301
+ - `debug`: []
302
+ - `dataloader_drop_last`: False
303
+ - `dataloader_num_workers`: 0
304
+ - `dataloader_prefetch_factor`: None
305
+ - `past_index`: -1
306
+ - `disable_tqdm`: False
307
+ - `remove_unused_columns`: True
308
+ - `label_names`: None
309
+ - `load_best_model_at_end`: False
310
+ - `ignore_data_skip`: False
311
+ - `fsdp`: []
312
+ - `fsdp_min_num_params`: 0
313
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
314
+ - `fsdp_transformer_layer_cls_to_wrap`: None
315
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
316
+ - `deepspeed`: None
317
+ - `label_smoothing_factor`: 0.0
318
+ - `optim`: adamw_torch
319
+ - `optim_args`: None
320
+ - `adafactor`: False
321
+ - `group_by_length`: False
322
+ - `length_column_name`: length
323
+ - `ddp_find_unused_parameters`: None
324
+ - `ddp_bucket_cap_mb`: None
325
+ - `ddp_broadcast_buffers`: False
326
+ - `dataloader_pin_memory`: True
327
+ - `dataloader_persistent_workers`: False
328
+ - `skip_memory_metrics`: True
329
+ - `use_legacy_prediction_loop`: False
330
+ - `push_to_hub`: False
331
+ - `resume_from_checkpoint`: None
332
+ - `hub_model_id`: None
333
+ - `hub_strategy`: every_save
334
+ - `hub_private_repo`: False
335
+ - `hub_always_push`: False
336
+ - `gradient_checkpointing`: False
337
+ - `gradient_checkpointing_kwargs`: None
338
+ - `include_inputs_for_metrics`: False
339
+ - `eval_do_concat_batches`: True
340
+ - `fp16_backend`: auto
341
+ - `push_to_hub_model_id`: None
342
+ - `push_to_hub_organization`: None
343
+ - `mp_parameters`:
344
+ - `auto_find_batch_size`: False
345
+ - `full_determinism`: False
346
+ - `torchdynamo`: None
347
+ - `ray_scope`: last
348
+ - `ddp_timeout`: 1800
349
+ - `torch_compile`: False
350
+ - `torch_compile_backend`: None
351
+ - `torch_compile_mode`: None
352
+ - `dispatch_batches`: None
353
+ - `split_batches`: None
354
+ - `include_tokens_per_second`: False
355
+ - `include_num_input_tokens_seen`: False
356
+ - `neftune_noise_alpha`: None
357
+ - `optim_target_modules`: None
358
+ - `batch_eval_metrics`: False
359
+ - `eval_on_start`: False
360
+ - `eval_use_gather_object`: False
361
+ - `batch_sampler`: batch_sampler
362
+ - `multi_dataset_batch_sampler`: round_robin
363
+
364
+ </details>
365
+
366
+ ### Training Logs
367
+ | Epoch | Step | Training Loss | eval_spearman_max |
368
+ |:------:|:-----:|:-------------:|:-----------------:|
369
+ | 0.1106 | 500 | 0.1845 | 0.6681 |
370
+ | 0.2211 | 1000 | 0.0942 | 0.7711 |
371
+ | 0.3317 | 1500 | 0.0821 | 0.6355 |
372
+ | 0.4423 | 2000 | 0.0794 | 0.7283 |
373
+ | 0.5529 | 2500 | 0.0788 | 0.7129 |
374
+ | 0.6634 | 3000 | 0.0737 | 0.7853 |
375
+ | 0.7740 | 3500 | 0.07 | 0.7013 |
376
+ | 0.8846 | 4000 | 0.0686 | 0.7809 |
377
+ | 0.9951 | 4500 | 0.0683 | 0.7578 |
378
+ | 1.0 | 4522 | - | 0.7976 |
379
+ | 1.1057 | 5000 | 0.07 | 0.7749 |
380
+ | 1.2163 | 5500 | 0.0656 | 0.7826 |
381
+ | 1.3268 | 6000 | 0.0587 | 0.8032 |
382
+ | 1.4374 | 6500 | 0.0584 | 0.7666 |
383
+ | 1.5480 | 7000 | 0.0582 | 0.7917 |
384
+ | 1.6586 | 7500 | 0.0546 | 0.7945 |
385
+ | 1.7691 | 8000 | 0.0528 | 0.7786 |
386
+ | 1.8797 | 8500 | 0.051 | 0.7732 |
387
+ | 1.9903 | 9000 | 0.0527 | 0.7996 |
388
+ | 2.0 | 9044 | - | 0.7898 |
389
+ | 2.1008 | 9500 | 0.0509 | 0.7957 |
390
+ | 2.2114 | 10000 | 0.0492 | 0.7988 |
391
+ | 2.3220 | 10500 | 0.0451 | 0.8044 |
392
+ | 2.4326 | 11000 | 0.0443 | 0.7961 |
393
+ | 2.5431 | 11500 | 0.0445 | 0.7975 |
394
+ | 2.6537 | 12000 | 0.0433 | 0.8054 |
395
+ | 2.7643 | 12500 | 0.0394 | 0.7890 |
396
+ | 2.8748 | 13000 | 0.0387 | 0.8020 |
397
+ | 2.9854 | 13500 | 0.0401 | 0.8096 |
398
+ | 3.0 | 13566 | - | 0.8087 |
399
+ | 3.0960 | 14000 | 0.0399 | 0.8098 |
400
+ | 3.2065 | 14500 | 0.039 | 0.8077 |
401
+ | 3.3171 | 15000 | 0.0346 | 0.8021 |
402
+ | 3.4277 | 15500 | 0.0339 | 0.8082 |
403
+ | 3.5383 | 16000 | 0.0347 | 0.8150 |
404
+ | 3.6488 | 16500 | 0.0352 | 0.8144 |
405
+ | 3.7594 | 17000 | 0.032 | 0.8141 |
406
+ | 3.8700 | 17500 | 0.0326 | 0.8151 |
407
+ | 3.9805 | 18000 | 0.0318 | 0.8162 |
408
+ | 4.0 | 18088 | - | 0.8163 |
409
+
410
+
411
+ ### Framework Versions
412
+ - Python: 3.10.12
413
+ - Sentence Transformers: 3.2.1
414
+ - Transformers: 4.44.2
415
+ - PyTorch: 2.4.1+cu121
416
+ - Accelerate: 1.0.1
417
+ - Datasets: 3.0.1
418
+ - Tokenizers: 0.19.1
419
+
420
+ ## Citation
421
+
422
+ ### BibTeX
423
+
424
+ #### Sentence Transformers
425
+ ```bibtex
426
+ @inproceedings{reimers-2019-sentence-bert,
427
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
428
+ author = "Reimers, Nils and Gurevych, Iryna",
429
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
430
+ month = "11",
431
+ year = "2019",
432
+ publisher = "Association for Computational Linguistics",
433
+ url = "https://arxiv.org/abs/1908.10084",
434
+ }
435
+ ```
436
+
437
+ <!--
438
+ ## Glossary
439
+
440
+ *Clearly define terms in order to be accessible across audiences.*
441
+ -->
442
+
443
+ <!--
444
+ ## Model Card Authors
445
+
446
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
447
+ -->
448
+
449
+ <!--
450
+ ## Model Card Contact
451
+
452
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
453
+ -->
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/drive/MyDrive/SBERT-FineTuning2/Facebook-Large/save_pretrained",
3
+ "_num_labels": 3,
4
+ "architectures": [
5
+ "RobertaModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "bos_token_id": 0,
9
+ "classifier_dropout": null,
10
+ "eos_token_id": 2,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
+ "id2label": {
15
+ "0": "CONTRADICTION",
16
+ "1": "NEUTRAL",
17
+ "2": "ENTAILMENT"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 4096,
21
+ "label2id": {
22
+ "CONTRADICTION": 0,
23
+ "ENTAILMENT": 2,
24
+ "NEUTRAL": 1
25
+ },
26
+ "layer_norm_eps": 1e-05,
27
+ "max_position_embeddings": 514,
28
+ "model_type": "roberta",
29
+ "num_attention_heads": 16,
30
+ "num_hidden_layers": 24,
31
+ "pad_token_id": 1,
32
+ "position_embedding_type": "absolute",
33
+ "torch_dtype": "float32",
34
+ "transformers_version": "4.44.2",
35
+ "type_vocab_size": 1,
36
+ "use_cache": true,
37
+ "vocab_size": 50265
38
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
openvino/openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77696135dcf025efaeb60199f09551216e65bcbe1c4fb831a87383661313920f
3
+ size 1417244820
openvino/openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "tokenizer_class": "RobertaTokenizer",
60
+ "trim_offsets": true,
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff