--- base_model: FacebookAI/roberta-large-mnli library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:72338 - loss:CosineSimilarityLoss widget: - source_sentence: Do I need to know HTML & CSS to learn javascript? sentences: - What Would the Piano Chords to "Winter, You Tease" by Layla be? - Men playing a sport outside. - How do I learn web development as quickly as possible? - source_sentence: Isn't it inconsistent to prefer both a well-informed electorate and an ignorant jury? sentences: - Some people like when the electorate is stupid. - Two people working on computer - How is 0+0+0+0+0+0+0…= undefined? - source_sentence: A fluffy white and brown puppy is playing with a white, curly-haired puppy. sentences: - Why is H2O liquid and H2S solid at room temperature? - The bird is sitting in a nest. - The puppies are playing together. - source_sentence: A woman in a blue shirt and sunglasses dancing. sentences: - The woman is dancing. - Is Qatar part of UAE? - Two lovers walk together in Paris. - source_sentence: A motorbike rider is barreling across a grass lawn. sentences: - The girl is wearing a shirt. - Why doesn't Java have pointers? - The rider is outdoors on a motorbike. model-index: - name: SentenceTransformer based on FacebookAI/roberta-large-mnli results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: eval type: eval metrics: - type: pearson_cosine value: 0.8457307745816387 name: Pearson Cosine - type: spearman_cosine value: 0.810079801718123 name: Spearman Cosine - type: pearson_manhattan value: 0.8108388961642436 name: Pearson Manhattan - type: spearman_manhattan value: 0.7916598710432559 name: Spearman Manhattan - type: pearson_euclidean value: 0.8106363007947738 name: Pearson Euclidean - type: spearman_euclidean value: 0.7916399795577503 name: Spearman Euclidean - type: pearson_dot value: 0.8566895266416593 name: Pearson Dot - type: spearman_dot value: 0.8163029561419852 name: Spearman Dot - type: pearson_max value: 0.8566895266416593 name: Pearson Max - type: spearman_max value: 0.8163029561419852 name: Spearman Max --- # SentenceTransformer based on FacebookAI/roberta-large-mnli This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/roberta-large-mnli](https://huggingface.co/FacebookAI/roberta-large-mnli). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [FacebookAI/roberta-large-mnli](https://huggingface.co/FacebookAI/roberta-large-mnli) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("richie-ghost/sbert_facebook_large_mnli_openVino2") # Run inference sentences = [ 'A motorbike rider is barreling across a grass lawn.', 'The rider is outdoors on a motorbike.', 'The girl is wearing a shirt.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `eval` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-------------------|:-----------| | pearson_cosine | 0.8457 | | spearman_cosine | 0.8101 | | pearson_manhattan | 0.8108 | | spearman_manhattan | 0.7917 | | pearson_euclidean | 0.8106 | | spearman_euclidean | 0.7916 | | pearson_dot | 0.8567 | | spearman_dot | 0.8163 | | pearson_max | 0.8567 | | **spearman_max** | **0.8163** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 72,338 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:-------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| | Hows would you create strategies and tactics in various combat situations? | I have girlfriend and their parents accepted for my marriage, I m working in Nagpur but her parents wanted me to shift Bangalore? Is it valid wish? | 0 | | Man from the army speaking with civilian women. | The man is a sergeant | 0 | | An old man with a white shirt and black pants sits on a chair in the opening of a stone tunnel. | Someone has black pants. | 1 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 4 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | eval_spearman_max | |:------:|:-----:|:-------------:|:-----------------:| | 0.1106 | 500 | 0.1845 | 0.6681 | | 0.2211 | 1000 | 0.0942 | 0.7711 | | 0.3317 | 1500 | 0.0821 | 0.6355 | | 0.4423 | 2000 | 0.0794 | 0.7283 | | 0.5529 | 2500 | 0.0788 | 0.7129 | | 0.6634 | 3000 | 0.0737 | 0.7853 | | 0.7740 | 3500 | 0.07 | 0.7013 | | 0.8846 | 4000 | 0.0686 | 0.7809 | | 0.9951 | 4500 | 0.0683 | 0.7578 | | 1.0 | 4522 | - | 0.7976 | | 1.1057 | 5000 | 0.07 | 0.7749 | | 1.2163 | 5500 | 0.0656 | 0.7826 | | 1.3268 | 6000 | 0.0587 | 0.8032 | | 1.4374 | 6500 | 0.0584 | 0.7666 | | 1.5480 | 7000 | 0.0582 | 0.7917 | | 1.6586 | 7500 | 0.0546 | 0.7945 | | 1.7691 | 8000 | 0.0528 | 0.7786 | | 1.8797 | 8500 | 0.051 | 0.7732 | | 1.9903 | 9000 | 0.0527 | 0.7996 | | 2.0 | 9044 | - | 0.7898 | | 2.1008 | 9500 | 0.0509 | 0.7957 | | 2.2114 | 10000 | 0.0492 | 0.7988 | | 2.3220 | 10500 | 0.0451 | 0.8044 | | 2.4326 | 11000 | 0.0443 | 0.7961 | | 2.5431 | 11500 | 0.0445 | 0.7975 | | 2.6537 | 12000 | 0.0433 | 0.8054 | | 2.7643 | 12500 | 0.0394 | 0.7890 | | 2.8748 | 13000 | 0.0387 | 0.8020 | | 2.9854 | 13500 | 0.0401 | 0.8096 | | 3.0 | 13566 | - | 0.8087 | | 3.0960 | 14000 | 0.0399 | 0.8098 | | 3.2065 | 14500 | 0.039 | 0.8077 | | 3.3171 | 15000 | 0.0346 | 0.8021 | | 3.4277 | 15500 | 0.0339 | 0.8082 | | 3.5383 | 16000 | 0.0347 | 0.8150 | | 3.6488 | 16500 | 0.0352 | 0.8144 | | 3.7594 | 17000 | 0.032 | 0.8141 | | 3.8700 | 17500 | 0.0326 | 0.8151 | | 3.9805 | 18000 | 0.0318 | 0.8162 | | 4.0 | 18088 | - | 0.8163 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.2.1 - Transformers: 4.44.2 - PyTorch: 2.4.1+cu121 - Accelerate: 1.0.1 - Datasets: 3.0.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```