File size: 8,194 Bytes
b97e798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
{
    "bomFormat": "CycloneDX",
    "specVersion": "1.6",
    "serialNumber": "urn:uuid:8fbc208b-8a4d-4877-a1c1-5d07a22f5cc0",
    "version": 1,
    "metadata": {
        "timestamp": "2025-06-05T09:41:50.547933+00:00",
        "component": {
            "type": "machine-learning-model",
            "bom-ref": "rinna/japanese-gpt-neox-3.6b-instruction-sft-e7a06d20-f7da-5712-b713-897284b52f74",
            "name": "rinna/japanese-gpt-neox-3.6b-instruction-sft",
            "externalReferences": [
                {
                    "url": "https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft",
                    "type": "documentation"
                }
            ],
            "modelCard": {
                "modelParameters": {
                    "task": "text-generation",
                    "architectureFamily": "gpt_neox",
                    "modelArchitecture": "GPTNeoXForCausalLM",
                    "datasets": [
                        {
                            "ref": "Anthropic/hh-rlhf-5da2bc0b-1d42-54c8-8b53-3770b07b011a"
                        },
                        {
                            "ref": "stanfordnlp/SHP-f9be653c-ec3d-5323-8491-cc46c65f1623"
                        }
                    ]
                },
                "properties": [
                    {
                        "name": "library_name",
                        "value": "transformers"
                    },
                    {
                        "name": "base_model",
                        "value": "rinna/japanese-gpt-neox-3.6b"
                    }
                ]
            },
            "authors": [
                {
                    "name": "rinna"
                }
            ],
            "licenses": [
                {
                    "license": {
                        "id": "MIT",
                        "url": "https://spdx.org/licenses/MIT.html"
                    }
                }
            ],
            "description": "This repository provides a Japanese GPT-NeoX model of 3.6 billion parameters. The model is based on [`rinna/japanese-gpt-neox-3.6b`](https://huggingface.co/rinna/japanese-gpt-neox-3.6b) and has been finetuned to serve as an instruction-following conversational agent.* **Model architecture**A 36-layer, 2816-hidden-size transformer-based language model.* **Finetuning**The finetuning data is the subset of the following datasets and has been translated into Japanese.* [Anthropic HH RLHF data](https://huggingface.co/datasets/Anthropic/hh-rlhf)* [FLAN Instruction Tuning data](https://github.com/google-research/FLAN)* [Stanford Human Preferences Dataset](https://huggingface.co/datasets/stanfordnlp/SHP)The data will **not** be released.* **Model Series**| Variant | Link || :-- | :--|| 3.6B PPO | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-ppo || 3.6B SFT-v2 | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft-v2 || 3.6B SFT | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft || 3.6B pretrained | https://huggingface.co/rinna/japanese-gpt-neox-3.6b |* **Contributors**[Tianyu Zhao](https://huggingface.co/tianyuz) and [Kei Sawada](https://huggingface.co/keisawada)* **Release date**March 17, 2023",
            "tags": [
                "transformers",
                "pytorch",
                "safetensors",
                "gpt_neox",
                "text-generation",
                "lm",
                "nlp",
                "ja",
                "dataset:Anthropic/hh-rlhf",
                "dataset:stanfordnlp/SHP",
                "arxiv:2404.01657",
                "base_model:rinna/japanese-gpt-neox-3.6b",
                "base_model:finetune:rinna/japanese-gpt-neox-3.6b",
                "license:mit",
                "autotrain_compatible",
                "text-generation-inference",
                "region:us"
            ]
        }
    },
    "components": [
        {
            "type": "data",
            "bom-ref": "Anthropic/hh-rlhf-5da2bc0b-1d42-54c8-8b53-3770b07b011a",
            "name": "Anthropic/hh-rlhf",
            "data": [
                {
                    "type": "dataset",
                    "bom-ref": "Anthropic/hh-rlhf-5da2bc0b-1d42-54c8-8b53-3770b07b011a",
                    "name": "Anthropic/hh-rlhf",
                    "contents": {
                        "url": "https://huggingface.co/datasets/Anthropic/hh-rlhf",
                        "properties": [
                            {
                                "name": "license",
                                "value": "mit"
                            }
                        ]
                    },
                    "governance": {
                        "owners": [
                            {
                                "organization": {
                                    "name": "Anthropic",
                                    "url": "https://huggingface.co/Anthropic"
                                }
                            }
                        ]
                    },
                    "description": "\n\t\n\t\t\n\t\tDataset Card for HH-RLHF\n\t\n\n\n\t\n\t\t\n\t\tDataset Summary\n\t\n\nThis repository provides access to two different kinds of data:\n\nHuman preference data about helpfulness and harmlessness from Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. These data are meant to train preference (or reward) models for subsequent RLHF training. These data are not meant for supervised training of dialogue agents. Training dialogue agents on these data is likely to lead\u2026 See the full description on the dataset page: https://huggingface.co/datasets/Anthropic/hh-rlhf."
                }
            ]
        },
        {
            "type": "data",
            "bom-ref": "stanfordnlp/SHP-f9be653c-ec3d-5323-8491-cc46c65f1623",
            "name": "stanfordnlp/SHP",
            "data": [
                {
                    "type": "dataset",
                    "bom-ref": "stanfordnlp/SHP-f9be653c-ec3d-5323-8491-cc46c65f1623",
                    "name": "stanfordnlp/SHP",
                    "contents": {
                        "url": "https://huggingface.co/datasets/stanfordnlp/SHP",
                        "properties": [
                            {
                                "name": "task_categories",
                                "value": "text-generation, question-answering"
                            },
                            {
                                "name": "language",
                                "value": "en"
                            },
                            {
                                "name": "size_categories",
                                "value": "100K<n<1M"
                            }
                        ]
                    },
                    "governance": {
                        "owners": [
                            {
                                "organization": {
                                    "name": "stanfordnlp",
                                    "url": "https://huggingface.co/stanfordnlp"
                                }
                            }
                        ]
                    },
                    "description": "\n\t\n\t\t\n\t\t\ud83d\udea2  Stanford Human Preferences Dataset (SHP)\n\t\n\nIf you mention this dataset in a paper, please cite the paper: Understanding Dataset Difficulty with V-Usable Information (ICML 2022).\n\n\t\n\t\t\n\t\tSummary\n\t\n\nSHP is a dataset of 385K collective human preferences over responses to questions/instructions in 18 different subject areas, from cooking to legal advice.\nThe preferences are meant to reflect the helpfulness of one response over another, and are intended to be used for training RLHF\u2026 See the full description on the dataset page: https://huggingface.co/datasets/stanfordnlp/SHP."
                }
            ]
        }
    ]
}