File size: 3,410 Bytes
29f8087 a42d18e c0a20e1 a42d18e c0a20e1 29f8087 a42d18e 29f8087 c0a20e1 29f8087 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
language: ja
license: apache-2.0
datasets: reazon-research/reazonspeech
inference: false
tags:
- hubert
- speech
---
# `rinna/japanese-hubert-large`
![rinna-icon](./rinna.png)
# Overview
This is a Japanese HuBERT Large model trained by [rinna Co., Ltd.](https://rinna.co.jp/)
* **Model summary**
The model architecture is the same as the [original HuBERT Large model](https://huggingface.co/facebook/hubert-large-ll60k), which contains 24 transformer layers with 16 attention heads.
The model was trained using code from the [official repository](https://github.com/facebookresearch/fairseq/tree/main/examples/hubert), and the detailed training configuration can be found in the same repository and the [original paper](https://ieeexplore.ieee.org/document/9585401).
* **Training**
The model was trained on approximately 19,000 hours of following Japanese speech corpus ReazonSpeech v1.
- [ReazonSpeech](https://huggingface.co/datasets/reazon-research/reazonspeech)
* **Contributors**
- [Yukiya Hono](https://huggingface.co/yky-h)
- [Kentaro Mitsui](https://huggingface.co/Kentaro321)
- [Kei Sawada](https://huggingface.co/keisawada)
---
# How to use the model
```python
import soundfile as sf
from transformers import AutoFeatureExtractor, AutoModel
model_name = "rinna/japanese-hubert-large"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
model.eval()
raw_speech_16kHz, sr = sf.read(audio_file)
inputs = feature_extractor(
raw_speech_16kHz,
return_tensors="pt",
sampling_rate=sr,
)
outputs = model(**inputs)
print(f"Input: {inputs.input_values.size()}") # [1, #samples]
print(f"Output: {outputs.last_hidden_state.size()}") # [1, #frames, 1024]
```
A fairseq checkpoint file can also be available [here](https://huggingface.co/rinna/japanese-hubert-large/tree/main/fairseq).
---
# How to cite
```bibtex
@misc{rinna-japanese-hubert-large,
title = {rinna/japanese-hubert-large},
author = {Hono, Yukiya and Mitsui, Kentaro and Sawada, Kei},
url = {https://huggingface.co/rinna/japanese-hubert-large}
}
@inproceedings{sawada2024release,
title = {Release of Pre-Trained Models for the {J}apanese Language},
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
month = {5},
year = {2024},
pages = {13898--13905},
url = {https://aclanthology.org/2024.lrec-main.1213},
note = {\url{https://arxiv.org/abs/2404.01657}}
}
```
---
# References
```bibtex
@article{hsu2021hubert,
author = {Hsu, Wei-Ning and Bolte, Benjamin and Tsai, Yao-Hung Hubert and Lakhotia, Kushal and Salakhutdinov, Ruslan and Mohamed, Abdelrahman},
journal = {IEEE/ACM Transactions on Audio, Speech, and Language Processing},
title = {HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units},
year = {2021},
volume = {29},
pages = {3451-3460},
doi = {10.1109/TASLP.2021.3122291}
}
```
---
# License
[The Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0)
|