--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-medium.en results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_myst type: rishabhjain16/infer_myst config: en split: test metrics: - type: wer value: 11.88 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_pfs type: rishabhjain16/infer_pfs config: en split: test metrics: - type: wer value: 3.28 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_cmu type: rishabhjain16/infer_cmu config: en split: test metrics: - type: wer value: 1.98 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/libritts_dev_clean type: rishabhjain16/libritts_dev_clean config: en split: test metrics: - type: wer value: 5.15 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_pf_swedish type: rishabhjain16/infer_pf_swedish config: en split: test metrics: - type: wer value: 8.16 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_pf_german type: rishabhjain16/infer_pf_german config: en split: test metrics: - type: wer value: 34.99 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_pf_italian type: rishabhjain16/infer_pf_italian config: en split: test metrics: - type: wer value: 4.65 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_so_chinese type: rishabhjain16/infer_so_chinese config: en split: test metrics: - type: wer value: 15.87 name: WER --- # openai/whisper-medium.en This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2994 - Wer: 9.7808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.235 | 0.12 | 500 | 0.2735 | 11.0733 | | 0.1927 | 1.06 | 1000 | 0.2339 | 10.5575 | | 0.1119 | 1.18 | 1500 | 0.2280 | 9.6803 | | 0.0863 | 2.12 | 2000 | 0.2379 | 11.0621 | | 0.0322 | 3.05 | 2500 | 0.2614 | 9.9920 | | 0.0303 | 3.17 | 3000 | 0.2611 | 10.2742 | | 0.0161 | 4.11 | 3500 | 0.2885 | 10.4722 | | 0.0513 | 5.04 | 4000 | 0.2994 | 9.7808 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2