--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-medium.en results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_myst type: rishabhjain16/infer_myst config: en split: test metrics: - type: wer value: 12.33 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_pfs type: rishabhjain16/infer_pfs config: en split: test metrics: - type: wer value: 3.32 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/libritts_dev_clean type: rishabhjain16/libritts_dev_clean config: en split: test metrics: - type: wer value: 4.88 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_cmu_9h type: rishabhjain16/infer_cmu_9h config: en split: test metrics: - type: wer value: 15.08 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_pf_italian type: rishabhjain16/infer_pf_italian config: en split: test metrics: - type: wer value: 13.95 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_pf_german type: rishabhjain16/infer_pf_german config: en split: test metrics: - type: wer value: 59.94 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_pf_swedish type: rishabhjain16/infer_pf_swedish config: en split: test metrics: - type: wer value: 17.48 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_so_chinese type: rishabhjain16/infer_so_chinese config: en split: test metrics: - type: wer value: 23.41 name: WER --- # openai/whisper-medium.en This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4522 - Wer: 10.7946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2652 | 0.12 | 500 | 0.3042 | 11.2277 | | 0.2102 | 1.11 | 1000 | 0.2824 | 10.9156 | | 0.1913 | 2.1 | 1500 | 0.2924 | 11.2366 | | 0.0249 | 3.09 | 2000 | 0.3386 | 10.6246 | | 0.031 | 4.07 | 2500 | 0.3798 | 11.1400 | | 0.0224 | 5.06 | 3000 | 0.4086 | 10.9767 | | 0.0033 | 6.05 | 3500 | 0.4452 | 10.3392 | | 0.0028 | 7.03 | 4000 | 0.4522 | 10.7946 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2