File size: 2,972 Bytes
			
			| f7bb0e2 8f87b86 1d4c6dd 542d303 5d4b526 f7bb0e2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-medium.en
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: rishabhjain16/infer_cmu_9h
      type: rishabhjain16/infer_cmu_9h
      config: en
      split: test
    metrics:
    - type: wer
      value: 15.53
      name: WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: rishabhjain16/infer_pfs
      type: rishabhjain16/infer_pfs
      config: en
      split: test
    metrics:
    - type: wer
      value: 3.14
      name: WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: rishabhjain16/infer_myst
      type: rishabhjain16/infer_myst
      config: en
      split: test
    metrics:
    - type: wer
      value: 15.84
      name: WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: rishabhjain16/libritts_dev_clean
      type: rishabhjain16/libritts_dev_clean
      config: en
      split: test
    metrics:
    - type: wer
      value: 5.28
      name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-medium.en
This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1748
- Wer: 2.7097
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0329        | 5.0   | 500  | 0.1343          | 4.0125 |
| 0.0013        | 10.01 | 1000 | 0.1531          | 2.8810 |
| 0.0002        | 15.01 | 1500 | 0.1609          | 2.7321 |
| 0.0002        | 20.01 | 2000 | 0.1608          | 2.7544 |
| 0.0001        | 25.01 | 2500 | 0.1688          | 2.7321 |
| 0.0002        | 30.02 | 3000 | 0.1722          | 2.7172 |
| 0.0001        | 35.02 | 3500 | 0.1742          | 2.7172 |
| 0.0001        | 40.02 | 4000 | 0.1748          | 2.7097 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2
 | 
