riturajpandey739 commited on
Commit
49770fe
·
verified ·
1 Parent(s): 4f6e5f7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -191
README.md CHANGED
@@ -1,208 +1,48 @@
1
- ---
2
- library_name: transformers
3
- license: mit
4
- datasets:
5
- - mteb/tweet_sentiment_extraction
6
- language:
7
- - en
8
- metrics:
9
- - accuracy
10
- base_model:
11
- - openai-community/gpt2
12
- pipeline_tag: text-classification
13
- ---
14
-
15
- # Model Card for Model ID
16
-
17
- <!-- Provide a quick summary of what the model is/does. -->
18
-
19
-
20
 
21
  ## Model Details
22
 
23
- ### Model Description
24
-
25
- <!-- Provide a longer summary of what this model is. -->
26
-
27
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
28
-
29
- - **Developed by:** [More Information Needed]
30
- - **Funded by [optional]:** [More Information Needed]
31
- - **Shared by [optional]:** [More Information Needed]
32
- - **Model type:** [More Information Needed]
33
- - **Language(s) (NLP):** [More Information Needed]
34
- - **License:** [More Information Needed]
35
- - **Finetuned from model [optional]:** [More Information Needed]
36
-
37
- ### Model Sources [optional]
38
-
39
- <!-- Provide the basic links for the model. -->
40
-
41
- - **Repository:** [More Information Needed]
42
- - **Paper [optional]:** [More Information Needed]
43
- - **Demo [optional]:** [More Information Needed]
44
-
45
- ## Uses
46
-
47
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
48
-
49
- ### Direct Use
50
-
51
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
52
-
53
- [More Information Needed]
54
-
55
- ### Downstream Use [optional]
56
-
57
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
58
-
59
- [More Information Needed]
60
-
61
- ### Out-of-Scope Use
62
-
63
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
64
-
65
- [More Information Needed]
66
-
67
- ## Bias, Risks, and Limitations
68
-
69
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
70
-
71
- [More Information Needed]
72
-
73
- ### Recommendations
74
-
75
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
76
-
77
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
78
-
79
- ## How to Get Started with the Model
80
-
81
- Use the code below to get started with the model.
82
-
83
- [More Information Needed]
84
-
85
- ## Training Details
86
-
87
- ### Training Data
88
-
89
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
90
-
91
- [More Information Needed]
92
-
93
- ### Training Procedure
94
-
95
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
96
-
97
- #### Preprocessing [optional]
98
-
99
- [More Information Needed]
100
-
101
-
102
- #### Training Hyperparameters
103
-
104
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
105
-
106
- #### Speeds, Sizes, Times [optional]
107
-
108
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
109
-
110
- [More Information Needed]
111
-
112
- ## Evaluation
113
-
114
- <!-- This section describes the evaluation protocols and provides the results. -->
115
-
116
- ### Testing Data, Factors & Metrics
117
-
118
- #### Testing Data
119
-
120
- <!-- This should link to a Dataset Card if possible. -->
121
-
122
- [More Information Needed]
123
-
124
- #### Factors
125
-
126
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
127
-
128
- [More Information Needed]
129
-
130
- #### Metrics
131
-
132
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
133
-
134
- [More Information Needed]
135
-
136
- ### Results
137
-
138
- [More Information Needed]
139
-
140
- #### Summary
141
-
142
-
143
-
144
- ## Model Examination [optional]
145
-
146
- <!-- Relevant interpretability work for the model goes here -->
147
-
148
- [More Information Needed]
149
-
150
- ## Environmental Impact
151
-
152
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
153
-
154
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
155
-
156
- - **Hardware Type:** [More Information Needed]
157
- - **Hours used:** [More Information Needed]
158
- - **Cloud Provider:** [More Information Needed]
159
- - **Compute Region:** [More Information Needed]
160
- - **Carbon Emitted:** [More Information Needed]
161
-
162
- ## Technical Specifications [optional]
163
-
164
- ### Model Architecture and Objective
165
-
166
- [More Information Needed]
167
-
168
- ### Compute Infrastructure
169
-
170
- [More Information Needed]
171
-
172
- #### Hardware
173
-
174
- [More Information Needed]
175
-
176
- #### Software
177
-
178
- [More Information Needed]
179
-
180
- ## Citation [optional]
181
 
182
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
183
 
184
- **BibTeX:**
185
 
186
- [More Information Needed]
 
 
 
187
 
188
- **APA:**
189
 
190
- [More Information Needed]
191
 
192
- ## Glossary [optional]
 
 
 
193
 
194
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
195
 
196
- [More Information Needed]
197
 
198
- ## More Information [optional]
199
 
200
- [More Information Needed]
 
201
 
202
- ## Model Card Authors [optional]
 
203
 
204
- [More Information Needed]
 
205
 
206
- ## Model Card Contact
 
207
 
208
- [More Information Needed]
 
 
 
1
+ # GPT-2 Sentiment Analysis for Tweets
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  ## Model Details
4
 
5
+ - **Model Type**: GPT-2 (Fine-tuned for sentiment analysis)
6
+ - **Model Architecture**: Transformer-based language model (GPT-2)
7
+ - **Fine-tuned On**: `mteb/tweet_sentiment_extraction` dataset
8
+ - **Intended Task**: Sentiment Classification (Tweet Sentiment)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ ## Model Overview
11
 
12
+ This model is a fine-tuned version of GPT-2, trained to classify tweets into sentiment categories. The model was fine-tuned on the **mteb/tweet_sentiment_extraction** dataset, which contains labeled tweets for sentiment analysis.
13
 
14
+ The model performs the task of classifying tweets into three sentiment categories:
15
+ - **Negative**: Label 0
16
+ - **Neutral**: Label 1
17
+ - **Positive**: Label 2
18
 
19
+ This model is suitable for analyzing sentiment in short-form text such as tweets, product reviews, or customer feedback.
20
 
21
+ ## Intended Use
22
 
23
+ The model can be used for the following purposes:
24
+ - **Sentiment analysis** of short texts (e.g., tweets, reviews, feedback).
25
+ - **Customer feedback analysis** to classify sentiment in user comments.
26
+ - **Social media monitoring** to track the sentiment of public opinion about topics, brands, or products.
27
 
28
+ ## How to Use
29
 
30
+ You can use the model with the Hugging Face `pipeline` API to classify the sentiment of a text input.
31
 
32
+ #### Example:
33
 
34
+ ```python
35
+ from transformers import pipeline
36
 
37
+ # Load the fine-tuned model
38
+ classifier = pipeline("text-classification", model="your-username/gpt2-sentiment-analysis-tweets")
39
 
40
+ # Example text for sentiment classification
41
+ text = "This product is amazing! I absolutely love it."
42
 
43
+ # Get the sentiment prediction
44
+ result = classifier(text)
45
 
46
+ # Output the result
47
+ print(result)
48
+ # Example Output: [{'label': 'Positive', 'score': 0.999}]