--- library_name: peft license: mit base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B tags: - generated_from_trainer datasets: - improver/length_human_train.jsonl model-index: - name: data/user_data/riyaza/saved_models/DeepSeek-R1-Distill-Qwen-1.5B_demo results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B # optionally might have model_type or tokenizer_type # model_type: AutoModelForCausalLM # tokenizer_type: AutoTokenizer # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: improver/length_human_train.jsonl type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: /data/user_data/riyaza/saved_models/DeepSeek-R1-Distill-Qwen-1.5B_demo sequence_len: 4096 sample_packing: false pad_to_sequence_len: adapter: qlora lora_model_dir: lora_r: 16 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: "DeepSeek-R1-Distill-Qwen-1.5B_demo" wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 3 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.00005 train_on_inputs: false group_by_length: true bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: /data/user_data/riyaza/saved_models/DeepSeek-R1-Distill-Qwen-1.5B_demo/checkpoint-344 local_rank: logging_steps: 10 xformers_attention: flash_attention: warmup_steps: 100 evals_per_epoch: 1 eval_table_size: eval_max_new_tokens: 256 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# data/user_data/riyaza/saved_models/DeepSeek-R1-Distill-Qwen-1.5B_demo This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) on the improver/length_human_train.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 0.2708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4873 | 0.9971 | 172 | 0.2755 | | 0.3758 | 1.9913 | 344 | 0.2677 | | 0.3732 | 2.9971 | 516 | 0.2708 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.21.0