rlogh commited on
Commit
dc768d4
·
verified ·
1 Parent(s): 49320cb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +196 -184
README.md CHANGED
@@ -1,184 +1,196 @@
1
- ---
2
- license: mit
3
- tags:
4
- - tabular
5
- - classification
6
- - automl
7
- - autogluon
8
- - cheese
9
- - food
10
- - texture
11
- datasets:
12
- - aslan-ng/cheese-tabular
13
- metrics:
14
- - accuracy
15
- - f1-score
16
- model-index:
17
- - name: Cheese Texture AutoGluon Classifier
18
- results:
19
- - task:
20
- type: text-classification
21
- name: Cheese Texture Classification
22
- dataset:
23
- type: aslan-ng/cheese-tabular
24
- name: Cheese Tabular Dataset
25
- metrics:
26
- - type: accuracy
27
- value: 0.3167
28
- name: Test Accuracy
29
- - type: f1
30
- value: 0.3100
31
- name: Test F1 Score
32
- - type: accuracy
33
- value: 0.1667
34
- name: External Validation Accuracy
35
- - type: f1
36
- value: 0.1635
37
- name: External Validation F1 Score
38
- ---
39
-
40
- # Cheese Texture Classification Model
41
-
42
- ## Model Description
43
-
44
- This is an AutoGluon-trained machine learning model for predicting cheese texture based on nutritional and origin features. The model was trained using automated machine learning techniques to find the best performing algorithm and hyperparameters for this classification task.
45
-
46
- **Model Creator**: Rumi Loghmani
47
- **Model Repository**: [rlogh/cheese-texture-autogluon-classifier](https://huggingface.co/rlogh/cheese-texture-autogluon-classifier)
48
-
49
- ## Model Details
50
-
51
- - **Model Type**: AutoGluon TabularPredictor
52
- - **Task**: Multiclass Classification
53
- - **Target Variable**: texture (soft, semi-soft, semi-hard, hard)
54
- - **Features**: fat, origin, holed, price, protein
55
- - **Best Model**: NeuralNetTorch_r121_BAG_L1
56
- - **Training Time**: 9.27 seconds
57
- - **Prediction Time**: 0.0627 seconds per sample
58
-
59
- ## Dataset
60
-
61
- - **Source**: [aslan-ng/cheese-tabular](https://huggingface.co/datasets/aslan-ng/cheese-tabular)
62
- - **Original Dataset Creator**: [Aslan Noorghasemi](https://huggingface.co/aslan-ng) (Hugging Face username: aslan-ng)
63
- - **Training Data**: 300 augmented samples (80% train, 20% test)
64
- - **Validation Data**: 30 original samples
65
- - **Total Features**: 5 (fat, origin, holed, price, protein)
66
- - **Classes**: 4 texture categories
67
-
68
- ## Performance
69
-
70
- ### Test Set Performance (Synthetic Data)
71
- - **Accuracy**: 0.3167
72
- - **Weighted F1 Score**: 0.3100
73
-
74
- ### External Validation (Original Data)
75
- - **Accuracy**: 0.1667
76
- - **Weighted F1 Score**: 0.1635
77
-
78
- ## Usage
79
-
80
- ### Quick Inference (Pickle File)
81
-
82
- ```python
83
- import cloudpickle
84
- import huggingface_hub
85
- import pandas as pd
86
-
87
- # Download and load the model
88
- model_path = huggingface_hub.hf_hub_download(
89
- repo_id="rlogh/cheese-texture-autogluon-classifier",
90
- filename="cheese_texture_predictor.pkl"
91
- )
92
-
93
- with open(model_path, "rb") as f:
94
- predictor = cloudpickle.load(f)
95
-
96
- # Prepare your data (example)
97
- new_cheese_data = pd.DataFrame({
98
- 'fat': [25.0],
99
- 'origin': ['Italy'],
100
- 'holed': [0],
101
- 'price': [3.50],
102
- 'protein': [22.0]
103
- })
104
-
105
- # Make predictions
106
- predictions = predictor.predict(new_cheese_data)
107
- print(f"Predicted texture: {predictions[0]}")
108
- ```
109
-
110
- ### Complete Inference (Native Directory)
111
-
112
- ```python
113
- import huggingface_hub
114
- import zipfile
115
- import shutil
116
- import autogluon.tabular
117
- import pandas as pd
118
-
119
- # Download and extract the model
120
- zip_path = huggingface_hub.hf_hub_download(
121
- repo_id="rlogh/cheese-texture-autogluon-classifier",
122
- filename="cheese_texture_predictor_dir.zip"
123
- )
124
-
125
- # Extract to a directory
126
- extract_dir = "extracted_predictor"
127
- with zipfile.ZipFile(zip_path, 'r') as zip_ref:
128
- zip_ref.extractall(extract_dir)
129
-
130
- # Load the native predictor
131
- predictor = autogluon.tabular.TabularPredictor.load(extract_dir)
132
-
133
- # Make predictions
134
- predictions = predictor.predict(new_cheese_data)
135
- ```
136
-
137
- ## Feature Importance
138
-
139
- The model considers the following features in order of importance:
140
- 1. **fat**: Fat content per 100g of cheese
141
- 2. **protein**: Protein content per 100g of cheese
142
- 3. **price**: Price per unit
143
- 4. **origin**: Country/region of origin
144
- 5. **holed**: Whether the cheese has holes (0 or 1)
145
-
146
- ## Limitations
147
-
148
- - The model is trained on a relatively small dataset (330 samples total)
149
- - Performance may vary on cheese types not well represented in the training data
150
- - The model assumes standard nutritional values and may not account for variations in cheese production methods
151
- - External validation shows some performance degradation, indicating potential overfitting to synthetic data
152
-
153
- ## Training Details
154
-
155
- - **Framework**: AutoGluon Tabular
156
- - **Training Time**: 10 minutes (600 seconds)
157
- - **Preset**: best_quality
158
- - **Evaluation Metric**: accuracy
159
- - **Cross-Validation**: Yes (handled by AutoGluon)
160
-
161
- ## Citation
162
-
163
- If you use this model, please cite the original dataset:
164
-
165
- ```bibtex
166
- @dataset{aslan-ng/cheese-tabular,
167
- title={Cheese Tabular Dataset},
168
- author={Aslan Noorghasemi},
169
- year={2024},
170
- url={https://huggingface.co/datasets/aslan-ng/cheese-tabular},
171
- publisher={Hugging Face},
172
- doi={10.57967/hf/1234}
173
- }
174
- ```
175
-
176
- **Original Dataset**: [aslan-ng/cheese-tabular](https://huggingface.co/datasets/aslan-ng/cheese-tabular)
177
- **Dataset Creator**: [Aslan Noorghasemi](https://huggingface.co/aslan-ng) (@aslan-ng)
178
-
179
- ## Contact
180
-
181
- **Model Creator**: Rumi Loghmani
182
- **Model Questions**: Please refer to the model repository or contact the model creator.
183
-
184
- **Dataset Questions**: For questions about the original dataset, please contact [Aslan Noorghasemi](https://huggingface.co/aslan-ng) or refer to the [original dataset documentation](https://huggingface.co/datasets/aslan-ng/cheese-tabular).
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - tabular
5
+ - classification
6
+ - automl
7
+ - autogluon
8
+ - cheese
9
+ - food
10
+ - texture
11
+ datasets:
12
+ - aslan-ng/cheese-tabular
13
+ metrics:
14
+ - accuracy
15
+ - f1-score
16
+ model-index:
17
+ - name: Cheese Texture AutoGluon Classifier
18
+ results:
19
+ - task:
20
+ type: text-classification
21
+ name: Cheese Texture Classification
22
+ dataset:
23
+ type: aslan-ng/cheese-tabular
24
+ name: Cheese Tabular Dataset
25
+ metrics:
26
+ - type: accuracy
27
+ value: 0.3167
28
+ name: Test Accuracy
29
+ - type: f1
30
+ value: 0.3100
31
+ name: Test F1 Score
32
+ - type: accuracy
33
+ value: 0.1667
34
+ name: External Validation Accuracy
35
+ - type: f1
36
+ value: 0.1635
37
+ name: External Validation F1 Score
38
+ ---
39
+
40
+ # Cheese Texture Classification Model
41
+
42
+ ## Model Description
43
+
44
+ This is an AutoGluon-trained machine learning model for predicting cheese texture based on nutritional and origin features. The model was trained using automated machine learning techniques to find the best performing algorithm and hyperparameters for this classification task.
45
+
46
+ **Model Creator**: Rumi Loghmani
47
+ **Model Repository**: [rlogh/cheese-texture-autogluon-classifier](https://huggingface.co/rlogh/cheese-texture-autogluon-classifier)
48
+
49
+ ## Model Details
50
+
51
+ - **Model Type**: AutoGluon TabularPredictor
52
+ - **Task**: Multiclass Classification
53
+ - **Target Variable**: texture (soft, semi-soft, semi-hard, hard)
54
+ - **Features**: fat, origin, holed, price, protein
55
+ - **Best Model**: NeuralNetTorch_r121_BAG_L1
56
+ - **Training Time**: 9.27 seconds
57
+ - **Prediction Time**: 0.0627 seconds per sample
58
+
59
+ ## Dataset
60
+
61
+ - **Source**: [aslan-ng/cheese-tabular](https://huggingface.co/datasets/aslan-ng/cheese-tabular)
62
+ - **Original Dataset Creator**: [Aslan Noorghasemi](https://huggingface.co/aslan-ng) (Hugging Face username: aslan-ng)
63
+ - **Training Data**: 300 augmented samples (80% train, 20% test)
64
+ - **Validation Data**: 30 original samples
65
+ - **Total Features**: 5 (fat, origin, holed, price, protein)
66
+ - **Classes**: 4 texture categories
67
+
68
+ ## Performance
69
+
70
+ ### Test Set Performance (Synthetic Data)
71
+ - **Accuracy**: 0.3167
72
+ - **Weighted F1 Score**: 0.3100
73
+
74
+ ### External Validation (Original Data)
75
+ - **Accuracy**: 0.1667
76
+ - **Weighted F1 Score**: 0.1635
77
+
78
+ ## Usage
79
+
80
+ ### Quick Inference (Pickle File)
81
+
82
+ ```python
83
+ import cloudpickle
84
+ import huggingface_hub
85
+ import pandas as pd
86
+
87
+ # Download and load the model
88
+ model_path = huggingface_hub.hf_hub_download(
89
+ repo_id="rlogh/cheese-texture-autogluon-classifier",
90
+ filename="cheese_texture_predictor.pkl"
91
+ )
92
+
93
+ with open(model_path, "rb") as f:
94
+ predictor = cloudpickle.load(f)
95
+
96
+ # Prepare your data (example)
97
+ new_cheese_data = pd.DataFrame({
98
+ 'fat': [25.0],
99
+ 'origin': ['Italy'],
100
+ 'holed': [0],
101
+ 'price': [3.50],
102
+ 'protein': [22.0]
103
+ })
104
+
105
+ # Make predictions
106
+ predictions = predictor.predict(new_cheese_data)
107
+ print(f"Predicted texture: {predictions[0]}")
108
+ ```
109
+
110
+ ### Complete Inference (Native Directory)
111
+
112
+ ```python
113
+ import huggingface_hub
114
+ import zipfile
115
+ import shutil
116
+ import autogluon.tabular
117
+ import pandas as pd
118
+
119
+ # Download and extract the model
120
+ zip_path = huggingface_hub.hf_hub_download(
121
+ repo_id="rlogh/cheese-texture-autogluon-classifier",
122
+ filename="cheese_texture_predictor_dir.zip"
123
+ )
124
+
125
+ # Extract to a directory
126
+ extract_dir = "extracted_predictor"
127
+ with zipfile.ZipFile(zip_path, 'r') as zip_ref:
128
+ zip_ref.extractall(extract_dir)
129
+
130
+ # Load the native predictor
131
+ predictor = autogluon.tabular.TabularPredictor.load(extract_dir)
132
+
133
+ # Make predictions
134
+ predictions = predictor.predict(new_cheese_data)
135
+ ```
136
+
137
+ ## Feature Importance
138
+
139
+ The model considers the following features in order of importance:
140
+ 1. **fat**: Fat content per 100g of cheese
141
+ 2. **protein**: Protein content per 100g of cheese
142
+ 3. **price**: Price per unit
143
+ 4. **origin**: Country/region of origin
144
+ 5. **holed**: Whether the cheese has holes (0 or 1)
145
+
146
+ ## Limitations
147
+
148
+ - The model is trained on a relatively small dataset (330 samples total)
149
+ - Performance may vary on cheese types not well represented in the training data
150
+ - The model assumes standard nutritional values and may not account for variations in cheese production methods
151
+ - External validation shows some performance degradation, indicating potential overfitting to synthetic data
152
+
153
+ ## Training Details
154
+
155
+ - **Framework**: AutoGluon Tabular
156
+ - **Training Time**: 10 minutes (600 seconds)
157
+ - **Preset**: best_quality
158
+ - **Evaluation Metric**: accuracy
159
+ - **Cross-Validation**: Yes (handled by AutoGluon)
160
+
161
+
162
+ ## AI Usage in Development
163
+
164
+ This code was developed with the assistance of an AI co-pilot. The AI helped with various tasks, including:
165
+ - Generating initial code structures and boilerplate.
166
+ - Providing suggestions for code optimization and best practices.
167
+ - Assisting with debugging and error resolution.
168
+ - Generating explanatory text and documentation, such as parts of this model card.
169
+
170
+ The AI acted as a collaborative partner throughout the development process, accelerating the coding workflow and providing helpful guidance.
171
+
172
+
173
+ ## Citation
174
+
175
+ If you use this model, please cite the original dataset:
176
+
177
+ ```bibtex
178
+ @dataset{aslan-ng/cheese-tabular,
179
+ title={Cheese Tabular Dataset},
180
+ author={Aslan Noorghasemi},
181
+ year={2024},
182
+ url={https://huggingface.co/datasets/aslan-ng/cheese-tabular},
183
+ publisher={Hugging Face},
184
+ doi={10.57967/hf/1234}
185
+ }
186
+ ```
187
+
188
+ **Original Dataset**: [aslan-ng/cheese-tabular](https://huggingface.co/datasets/aslan-ng/cheese-tabular)
189
+ **Dataset Creator**: [Aslan Noorghasemi](https://huggingface.co/aslan-ng) (@aslan-ng)
190
+
191
+ ## Contact
192
+
193
+ **Model Creator**: Rumi Loghmani
194
+ **Model Questions**: Please refer to the model repository or contact the model creator.
195
+
196
+ **Dataset Questions**: For questions about the original dataset, please contact [Aslan Noorghasemi](https://huggingface.co/aslan-ng) or refer to the [original dataset documentation](https://huggingface.co/datasets/aslan-ng/cheese-tabular).